BUG is the bestest and fastest solution to this puzzle. It works like magic -- but spoils the fun a little.
Here's are some of the now obsolete choices to solve this type of position in the pre-bug days:
COLOR 8s
diagram I
- Code: Select all
4 28 19 | 3 6 89 | 5 7 12
5 7 3 | 4 1 2 | 9 6 8
+28 6 19 |[89] 7 5 | 4 3 12
----------------+----------------+-------------
6 +28 4 |-28 3 1 | 7 5 9
1 9 5 | 7 4 6 | 2 8 3
-28 3 7 | 289 5 89 | 6 1 4
----------------+----------------+-------------
9 5 6 | 1 2 3 | 8 4 7
3 4 2 | 6 8 7 | 1 9 5
7 1 8 | 5 9 4 | 3 2 6
Mark the candidate 8 in r3c1 with a plus.
The 8 in r6c1 is its conjugate -- that is, exactly one of the two cells must hold the 8. Mark it with a minus.
Similarly, r4c2 plus and then r4c4 minus.
Now, [r3c4] is in the same row as a PLUS and the same column as a MINUS. Since either the PLUS or the MINUS must be 8, you can eliminate the 8 from r3c4.
XY-type FORCING CHAIN / "nice loop"
diagram II
- Code: Select all
4 [28] 19 | 3 6 [89] | 5 7 12
5 7 3 | 4 1 2 | 9 6 8
[28] 6 19 | 89 7 5 | 4 3 12
----------------+----------------+-------------
6 28 4 | 28 3 1 | 7 5 9
1 9 5 | 7 4 6 | 2 8 3
[28] 3 7 | 289 5 [89] | 6 1 4
----------------+----------------+-------------
9 5 6 | 1 2 3 | 8 4 7
3 4 2 | 6 8 7 | 1 9 5
7 1 8 | 5 9 4 | 3 2 6
The five cells in [brackets] form a nice loop. Both values for r6c6 lead to r1c2=2, so r1c2=2.
Some other 5-cell nice loops:
diagram III
- Code: Select all
4 [28] 19 | 3 6 [89] | 5 7 12
5 7 3 | 4 1 2 | 9 6 8
28 6 19 |[89] 7 5 | 4 3 12
----------------+----------------+-------------
6 [28] 4 |[28] 3 1 | 7 5 9
1 9 5 | 7 4 6 | 2 8 3
28 3 7 | 289 5 89 | 6 1 4
----------------+----------------+-------------
9 5 6 | 1 2 3 | 8 4 7
3 4 2 | 6 8 7 | 1 9 5
7 1 8 | 5 9 4 | 3 2 6
diagram IV
- Code: Select all
4 28 19 | 3 6 [89] | 5 7 12
5 7 3 | 4 1 2 | 9 6 8
[28] 6 19 |[89] 7 5 | 4 3 12
----------------+----------------+-------------
6 28 4 | 28 3 1 | 7 5 9
1 9 5 | 7 4 6 | 2 8 3
[28] 3 7 | 289 5 [89] | 6 1 4
----------------+----------------+-------------
9 5 6 | 1 2 3 | 8 4 7
3 4 2 | 6 8 7 | 1 9 5
7 1 8 | 5 9 4 | 3 2 6
Diagrams II through IV describe a turbofish in 8s, making an exclusion for different reason. For example, in diagram IV, r3c4 and r6c6 must be the same -- either both 8s or both NOT 8s. But one of r3c1 and r6c1 must be an 8. Therefore, neither r3c4 nor r6c6 is an 8.
Here's a longer XY-type forcing chain. Either value for r6c1 leads to r6c4<>2:
diagram V
- Code: Select all
4 [28] 19 | 3 6 [89] | 5 7 12
5 7 3 | 4 1 2 | 9 6 8
[28] 6 19 |[89] 7 5 | 4 3 12
----------------+----------------+-------------
6 28 4 |[28] 3 1 | 7 5 9
1 9 5 | 7 4 6 | 2 8 3
[28] 3 7 | 289 5 89 | 6 1 4
----------------+----------------+-------------
9 5 6 | 1 2 3 | 8 4 7
3 4 2 | 6 8 7 | 1 9 5
7 1 8 | 5 9 4 | 3 2 6