+----------------+-------------+-----------------+
| 57 8 4567 | 2 3 17 | 1456 456 9 |
| 3 14 2 | 9 5 6 | 14 8 7 |
| 9 157 567 | 4 8 17 | 3 56 2 |
+----------------+-------------+-----------------+
| 4 3 1 | 8 9 5 | 2 7 6 |
| 6 9 8 | 3 7 2 | 45 1 45 |
| 57 2 57 | 6 1 4 | 9 3 8 |
+----------------+-------------+-----------------+
| 8 47 3479 | 5 246 39 | 467 2469 1 |
| 2 457 34579 | 1 46 389 | 45678 4569 45 |
| 1 6 459 | 7 24 89 | 458 2459 3 |
+----------------+-------------+-----------------+
Leren wrote:This was a really difficult puzzle for one from a published site. The least painful solution I could find involved 2 XYZ Wings, 5 Uniqueness moves and some intervening basics.
I can explain this in detail if you like but it will take quite a while. Well, alright here's the first 2 moves.
- Code: Select all
*--------------------------------------------------------------*
|a57 8 4567 | 2 3 17 | 1456 456 9 |
| 3 14 2 | 9 5 6 | 14 8 7 |
| 9 b157 56-7 | 4 8 c17 | 3 56 2 |
|--------------------+--------------------+--------------------|
| 4 3 1 | 8 9 5 | 2 7 6 |
| 6 9 8 | 3 7 2 | 45 1 45 |
| 57 2 57 | 6 1 4 | 9 3 8 |
|--------------------+--------------------+--------------------|
| 8 47 3479 | 5 246 39 | 467 2469 1 |
| 2 457 34579 | 1 46 389 | 45678 4569 345 |
| 1 6 3459 | 7 24 389 | 458 2459 345 |
*--------------------------------------------------------------*
The cells marked a, b and c form an XYZ wing. If r3c3 = 7 then there would a would 5, c would be 1 and b would be void, so r3c3 <> 7. A pointing pair of 5's then removes 5 from r3c2.
- Code: Select all
*--------------------------------------------------------------*
|*57 8 *46-57 | 2 3 17 | 1456 456 9 |
| 3 14 2 | 9 5 6 | 14 8 7 |
| 9 17 56 | 4 8 17 | 3 56 2 |
|--------------------+--------------------+--------------------|
| 4 3 1 | 8 9 5 | 2 7 6 |
| 6 9 8 | 3 7 2 | 45 1 45 |
|*57 2 *57 | 6 1 4 | 9 3 8 |
|--------------------+--------------------+--------------------|
| 8 47 3479 | 5 246 39 | 467 2469 1 |
| 2 5 3479 | 1 46 389 | 4678 469 34 |
| 1 6 349 | 7 24 389 | 458 2459 345 |
*--------------------------------------------------------------*
The cells marked * form a Unique Rectangle Type 1. If r1c3 were 5 or 7 then you would have 57 in 4 cells of a rectangle covering 2 boxes, and the puzzle solution would not be unique, so you can remove 5 and 7 from r1c3.
If you want any more let me know and I'll continue with the solution.
Leren
a57 8 4567 | 2 3 b17 | 1456 456 9
3 14 2 | 9 5 6 | 14 8 7
9 d17-5 567 | 4 8 c17 | 3 56 2
------------------------+----------------------+---------------------
4 3 1 | 8 9 5 | 2 7 6
6 9 8 | 3 7 2 | 45 1 45
57 2 57 | 6 1 4 | 9 3 8
------------------------+----------------------+---------------------
8 47 3479 | 5 246 39 | 467 2469 1
2 e457 34579 | 1 46 389 | 45678 4569 45
1 6 459 | 7 24 89 | 458 2459 3
*--------------------------------------------------------------*
|a57 8 4567 | 2 3 b17 | 1456 456 9 |
| 3 14 2 | 9 5 6 | 14 8 7 |
| 9 d17-5 567 | 4 8 c17 | 3 56 2 |
|--------------------+--------------------+--------------------|
| 4 3 1 | 8 9 5 | 2 7 6 |
| 6 9 8 | 3 7 2 | 45 1 45 |
| 57 2 57 | 6 1 4 | 9 3 8 |
|--------------------+--------------------+--------------------|
| 8 47 3479 | 5 246 39 | 467 2469 1 |
| 2 457 34579 | 1 46 389 | 45678 4569 45 |
| 1 6 459 | 7 24 89 | 458 2459 3 |
*--------------------------------------------------------------*
*--------------------------------------------------------------*
|a57 8 4567 | 2 3 17 | 1456 456 9 |
| 3 14 2 | 9 5 6 | 14 8 7 |
| 9 b157 56-7 | 4 8 c17 | 3 56 2 |
|--------------------+--------------------+--------------------|
| 4 3 1 | 8 9 5 | 2 7 6 |
| 6 9 8 | 3 7 2 | 45 1 45 |
| 57 2 57 | 6 1 4 | 9 3 8 |
|--------------------+--------------------+--------------------|
| 8 47 3479 | 5 246 39 | 467 2469 1 |
| 2 457 34579 | 1 46 389 | 45678 4569 45 |
| 1 6 459 | 7 24 89 | 458 2459 3 |
*--------------------------------------------------------------*
xatomicrenee wrote:Leren wrote:If you want any more let me know and I'll continue with the solution.
Leren
Yes please ;~; I'm more of a newb then I thought I was
xatomicrenee wrote ; Yes please ;~; I'm more of a newb then I thought I was