Hard 5*5 Latin Squares

Everything about Sudoku that doesn't fit in one of the other sections

Hard 5*5 Latin Squares

Postby qiuyanzhe » Wed Sep 19, 2018 4:22 pm

5*5 is the smallest size for Latin Squares to contain chains, and I think it is small enough for us to find out all puzzles requiring chains.
I used JSudoku to generate such puzzles(setting 1+ guess) and got several non-equivalent puzzles. I wonder if there are more.
qiuyanzhe
 
Posts: 94
Joined: 21 August 2017
Location: China

Re: Hard 5*5 Latin Squares

Postby qiuyanzhe » Wed Sep 19, 2018 5:54 pm

As rows, columns, digits can be switched each other to make isomorphic puzzles that "look quite different", only one of each equivalence class is shown.
If no extra marks, the puzzles can be solved by Pairs, X-wings and 5-step chains.
When a grid has multiple automorphisms, number of automorphisms is marked(titled "Symmetry"), including identity transformation.

The puzzle grids are after singles and normalization(shape first, then digits)
Code: Select all
pattern 1: 7 givens
12...
2.3..
.4...
...1.
....5
//Uniqueness Allowed: Gurth's_Symmetrical_Placement
//Symmetry:6
//Uniqueness Disabled: (unknown)

Code: Select all
pattern 2: 8 givens
123..
34...
..5..
...1.
....2

Code: Select all
pattern 3: 8 givens
12...
34...
..12.
..4..
....5
//Symmetry: 2

Code: Select all
pattern 4: 10 givens
123..
45.3.
..42.
..5..
....3

Code: Select all
pattern 5: 12 givens
12345
31...
4.2..
2..3.
5....
//Symmetry: 2
qiuyanzhe
 
Posts: 94
Joined: 21 August 2017
Location: China

Re: Hard 5*5 Latin Squares

Postby Mathimagics » Wed Dec 26, 2018 3:59 pm

qiuyanzhe wrote:5*5 is the smallest size for Latin Squares to contain chains, and I think it is small enough for us to find out all puzzles requiring chains.
I used JSudoku to generate such puzzles(setting 1+ guess) and got several non-equivalent puzzles. I wonder if there are more.


I assume by "puzzles requiring chains" you mean puzzles that can't be solved with singles alone? In Latin Square parlance, these would be uniquely completable partial LS's (ie. valid puzzles) that are not strong?

I take it also that we are only interested in minimal puzzles (ie. critical sets). We can certainly find all such puzzles in reasonable time. Using one representative from each of the 2 main classes of 5x5 Latin Squares, I obtained the following results:

Code: Select all
  Grid CSZ    NCS     SCS    TW    PW
  -----------------------------------
   5.1  6      50      50
   5.1  7    1000    1000
   5.1  8   30900   30900
   5.1  9   18800   18800
   5.1 10    2500    2500

   5.2  7     600     588    12
   5.2  8   21588   20904    36   648
   5.2  9   23718   23718
   5.2 10    2340    2268    36    36
   5.2 11     216     216


CSZ = Critical set size, SCS = # of strong CS (singles only), TW = # of totally weak CS (no singles), PW = partially weak (these all had 2 or 4 singles).

The 7-clue case is interesting, the only puzzles that aren't strong, are totally weak.

The 12 x 7-clue TW cases might all be the "same" puzzle by your definition. I have listed them here just in case:
Hidden Text: Show
Code: Select all
12....14......2...3.5....
12....1.5.3......2......4
12....1..3..5..4.......2.
1......45.....24.2...3...
1......4.33...2.5......2.
1.......53.4.....2..5..2.
.2.....45.3........15..2.
.2.....4.3...1.4.2..5....
.2......533...24......1..
..3...1.5.....24....5..2.
...4..1..33...2..2..5....
....5.14..3....4.2.....2.
Last edited by Mathimagics on Thu Dec 27, 2018 6:26 am, edited 1 time in total.
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: Hard 5*5 Latin Squares

Postby qiuyanzhe » Thu Dec 27, 2018 4:02 am

Wow, thanks for yor work!
These 7-clue puzzles are isomorphic, so we've got that it is the only weak 7-clue puzzle!
As for 8-clue, it turns out that my second grid is not minimal(r1c2 redundant), and according to the symmetry group size(72),.we can conclude that patterns 2&3 are the only weak 8-clue puzzles.
Patterns 4&5 are not minimal, and seems there are so many ways to erase the redundant givens. Also I didn't expect the 11s. Sharing a few of your results may help knowing the whole thing.
Cheers!
qiuyanzhe
 
Posts: 94
Joined: 21 August 2017
Location: China

Re: Hard 5*5 Latin Squares

Postby Mathimagics » Thu Dec 27, 2018 5:38 am

qiuyanzhe wrote:Wow, thanks for your work!

You're welcome! I just can't figure out why I missed your original post (but I was not alone it seems).

qiuyanzhe wrote:Sharing a few of your results may help knowing the whole thing.


Happy to do that, just tell me what you need? 8-)
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: Hard 5*5 Latin Squares

Postby qiuyanzhe » Thu Dec 27, 2018 6:18 am

Hi Mathimagics,
I think some examples for weak critical sets of other size would be useful, by isomorphs we may know all such critical sets.
Your new post is quite informative to me. From the first file I got that adding some digits to the 7-clue puzzle can make more weak puzzles.
(two more:(+r1c3+r4c35+r5c1) (+r1c3+r5c4))
A chart could be found in Pg.6 of the second file.
Code: Select all
LS Size #CS #Iso#Main#NS#Strong#TW
5.1 6    50    1   1   1   1    0
    7  1000   10   4   4   4    0
    8 30900  312  57  57  57    0
    9 18800  188  37  37  37    0
   10  2500   25   6   6   6    0
5.2 7   600   50  11  10  10    1
    8 21588 1802 322 311 311    1
    9 23718 1981 348 348 348    0
   10  2340  198  39  38  36    2
   11   216   18   4   4   4    0

No 11-cell TW critical set was reported there.. did I misread something?
qiuyanzhe
 
Posts: 94
Joined: 21 August 2017
Location: China

Re: Hard 5*5 Latin Squares

Postby Mathimagics » Thu Dec 27, 2018 6:46 am

qiuyanzhe wrote:No 11-cell TW critical set was reported there.. did I misread something?


No, I just transcribed the results from my logs incorrectly when making my table. I have corrected this above, the weak counts for 5.2.11 should have been for 5.2.10.

Thanks for spotting that! 8-)

Here are my weak (TW or PW) lists. I did not reduce the minimal puzzles by isomorphism (as Adams et al did), but you can do that. You should find that these reductions lead to counts that match their table exactly (for TW anyway).

Each puzzle is tagged with the number of singles (0 for totally weak).

5.2.7
Hidden Text: Show
[/code]
0: 12....14......2...3.5....
0: 12....1.5.3......2......4
0: 12....1..3..5..4.......2.
0: 1......45.....24.2...3...
0: 1......4.33...2.5......2.
0: 1.......53.4.....2..5..2.
0: .2.....45.3........15..2.
0: .2.....4.3...1.4.2..5....
0: .2......533...24......1..
0: ..3...1.5.....24....5..2.
0: ...4..1..33...2..2..5....
0: ....5.14..3....4.2.....2.
[/code]

5.2.8
Hidden Text: Show
Code: Select all
 4: 123...1.5.....24.....3...
 4: 123...1.5.....24......1..
 4: 123.....5..4..24.....3...
 4: 123.....5.....24...1..1..
 4: 12.4..1..3.4.....2..5....
 4: 12.4..1..3...1...2..5....
 4: 12.4.....3.4....52..5....
 4: 12.4.....3...1...2..5.1..
 4: 12..5.14..3.....5......2.
 4: 12..5.14..3........1...2.
 4: 12..5..4..3..1.....1...2.
 4: 12..5..4..3.....5....3.2.
 4: 12....14..3.....5..1...2.
 4: 12....1.5.....24.....31..
 4: 12....1..3.4.1...2..5....
 4: 12.....4..34.......1.3.2.
 4: 12.....4..3..1..5..1...2.
 4: 12.....4..3..1..5.....12.
 4: 12.....4..3.....5..1.3.2.
 2: 12.....4.....12.5.3.5....
 0: 12.....4.....12...3.53...
 2: 12.....4......2...3153...
 0: 12......5.34.....2.1....4
 2: 12......5.34.....2....1.4
 2: 12......5.3......2.1.3..4
 4: 12......5..4..245.....1..
 4: 12......5..4..24.....31..
 4: 12......5....124...1.3...
 4: 12......5.....24...1.31..
 2: 12.......3.45..4......12.
 4: 12.......3.4.1..52..5....
 4: 12.......3.4.1...2..5.1..
 4: 12.......3.4.....2.15.1..
 2: 12.......3..51.45......2.
 0: 12.......3..5..45.....12.
 4: 12.......3...1..52..53...
 4: 1.34..14..3.....5......2.
 4: 1.34..1.5.....24.....3...
 4: 1.34..1.5.....24......1..
 4: 1.34...4..3.....5....3.2.
 4: 1.34....5..4..24.....3...
 4: 1.34....5.....24...1..1..
 4: 1.34.....3.45..4.......2.
 4: 1.34.....3.4....52..5....
 4: 1.34.....3..5..4.......24
 4: 1.3.5.14..3.....5......2.
 4: 1.3.5.14..3........1...2.
 4: 1.3.5.1..3.4.....2..5....
 4: 1.3.5..4..3..1.....1...2.
 4: 1.3.5..4..3.....5....3.2.
 4: 1.3.5...5.3......23.....4
 4: 1.3.5...5.3......2...3..4
 4: 1.3.5...5..4..24.....3...
 4: 1.3.5....3.4....52..5....
 2: 1.3...14......2.5.3.5....
 4: 1.3...1.5..4..245........
 4: 1.3...1.5.....245....3...
 0: 1.3...1..3.45..4.......2.
 2: 1.3...1..3..5..45......2.
 2: 1.3....45.....245....3...
 4: 1.3....4.3.45..4.......2.
 4: 1.3....4.3.45..........24
 4: 1.3....4.3..5..45......2.
 4: 1.3....4.3..5...5.3....2.
 4: 1.3....4.3.....45.....12.
 4: 1.3....4.3......5.3...12.
 4: 1.3.....53.4.1...23......
 4: 1.3.....53.4.1...2...3...
 4: 1.3.....53.4..2..23......
 4: 1.3.....5.34.1...2...3...
 4: 1.3.....5.34..2..2...3...
 4: 1.3.....5.3...2..23.....4
 4: 1.3.....5.3...2..2...3..4
 4: 1.3.....5..45.2..2...3...
 4: 1.3.....5..4.12..2...3...
 4: 1.3.....5..4..245....3...
 0: 1.3.....5..4..24.2...3...
 4: 1.3.....5..4..2..23..3...
 4: 1.3.....5...512..2...3...
 2: 1.3.....5.....24.2...3..4
 4: 1.3.....5.....2..23..3..4
 4: 1.3......3.45..4......12.
 4: 1.3......3.45..4.......24
 4: 1.3......3.45....2.....24
 4: 1.3......3.4...4.2....12.
 4: 1.3......3.4.....2....124
 4: 1.3......3..5..45.....12.
 4: 1..45.1.5.....24.....3...
 4: 1..45.1..3.4.....2..5....
 4: 1..45.1..3...1...2..5....
 4: 1..45..4..3.....5....3.2.
 4: 1..45..4....5.2...3.5....
 4: 1..45..4......2.5.3.5....
 4: 1..45...5..4..24.....3...
 4: 1..45....3.4....52..5....
 4: 1..45....3...1...2..5.1..
 0: 1..4..14......2.5.3.5....
 2: 1..4..14......2...3.53...
 2: 1..4..1.5.3......2...3..4
 4: 1..4..1..3.4.....2..53...
 4: 1..4..1..3......52..53...
 4: 1..4...45...5.2.5.3......
 4: 1..4...45....12.....53...
 4: 1..4...45....12......3..4
 4: 1..4...45.....2.5.3.5....
 4: 1..4...45.....2...3.53...
 4: 1..4...45.....2...3..3..4
 4: 1..4...4.3.4....5..1...2.
 4: 1..4...4.3......52.....24
 4: 1..4...4.3......5..1...24
 4: 1..4...4....512.5......2.
 4: 1..4...4....5.2.5.3.5....
 4: 1..4...4....5.2.5.3....2.
 4: 1..4...4.....12.5.3.5....
 4: 1..4...4.....12.5...5..2.
 4: 1..4...4.....12...3.53...
 2: 1..4....53.4.....2..53...
 4: 1..4.....3.45..4.2.....2.
 2: 1..4.....3.45....2..5..2.
 4: 1..4.....3.45....2.....24
 4: 1..4.....3.4...452.....2.
 4: 1..4.....3.4...45..1...2.
 4: 1..4.....3.4....523....2.
 4: 1..4.....3.4....52.1...2.
 4: 1..4.....3.4....52..53...
 0: 1..4.....3.4....52..5..2.
 4: 1..4.....3.4....52.....24
 4: 1..4.....3.4.....231...2.
 4: 1..4.....3..5..4.2.....24
 4: 1...5.14..34....5......2.
 4: 1...5.14..34.........3.2.
 2: 1...5.1.5.34.....2......4
 0: 1...5.1.5.3......2...3..4
 2: 1...5.1..3.45..4.......2.
 4: 1...5..45...5.2......31..
 4: 1...5..45...5.2......3.2.
 4: 1...5..45.....2.5....31..
 2: 1...5..4.334....5......2.
 4: 1...5..4..34....5....3.2.
 2: 1...5..4..3...2.5.3....2.
 0: 1...5..4..3...2.5....3.2.
 4: 1...5..4....5.2.5.3....2.
 4: 1...5..4....5.2.5....3.2.
 4: 1...5..4....5.2...3.5..2.
 4: 1...5..4......2.5.3.5..2.
 4: 1...5..4......2.5...531..
 4: 1...5..4......2.5...53.2.
 4: 1...5..4......2.5....312.
 4: 1...5..4......2.5....3.24
 4: 1...5..4......2.5.....124
 4: 1...5...5334.....2.1.....
 4: 1...5...5334.....2......4
 4: 1...5...533......2...3..4
 4: 1...5...53.45....2.1.....
 4: 1...5...53.45....2......4
 4: 1...5...53.......23..3..4
 4: 1...5...5.34.....2.1....4
 4: 1...5...5.3...2..2.1.3...
 4: 1...5...5.3......23..3..4
 4: 1...5...5.3......2.1.3..4
 4: 1...5...5.....2..231.3...
 4: 1...5...5.....2..23..3..4
 4: 1.....14..34....5..1...2.
 4: 1.....1.5.....245....31..
 4: 1.....1..3.4.1...2..53...
 2: 1......45..4..2..23..3...
 4: 1......45...5.2.5.3....2.
 4: 1......45...5.2.5....31..
 4: 1......45...5.2.5....3.2.
 4: 1......45....12...3..3..4
 0: 1......45.....245....31..
 2: 1......45.....24..3..31..
 2: 1......45.....2.52...3..4
 4: 1......45.....2.5.3.5..2.
 4: 1......45.....2.5...531..
 4: 1......45.....2.5...53.2.
 4: 1......45.....2.5....31.4
 4: 1......45.....2.5....3.24
 4: 1......45.....2.5.....124
 0: 1......45.....2..23..3..4
 4: 1......45.....2...3.531..
 4: 1......45.....2...3.53.2.
 4: 1......45.....2...3.5.1.4
 4: 1......45.....2...3..31.4
 4: 1......45.....2...3..3.24
 0: 1......4.334....5..1...2.
 2: 1......4.33.5...5..1...2.
 4: 1......4.3.45..4.2.....2.
 4: 1......4.3.45....2.....24
 2: 1......4.3.4..2.5.3....2.
 4: 1......4.3.4...452.....2.
 4: 1......4.3.4...45..1...2.
 4: 1......4.3.4....523....2.
 4: 1......4.3.4....52.....24
 4: 1......4.3.4....5.31...2.
 4: 1......4.3.4....5..1...24
 4: 1......4.3.4.....231...2.
 0: 1......4.3..5.2.5.3....2.
 2: 1......4.3..5.2.5....3.2.
 4: 1......4.3..5..452.....2.
 4: 1......4.3..5..45..1...2.
 4: 1......4.3..5..4..31...2.
 4: 1......4.3..5...523....2.
 4: 1......4.3..5...5.31...2.
 4: 1......4.3..5...5.3...12.
 4: 1......4..34.1..5..1...2.
 4: 1......4..34.1..5.....12.
 4: 1......4..34....5..1.3.2.
 4: 1......4..34....5..1..12.
 2: 1......4..3...2.5..1.3.2.
 4: 1......4....512.5.3....2.
 4: 1......4.....12.5.3.5..2.
 4: 1......4.....12...3.531..
 4: 1......4.....12...3.53.2.
 4: 1......4.....12...3.53..4
 4: 1......4.....12...3.5.1.4
 4: 1......4.....12...3..3.24
 4: 1.......5334.1...2...3...
 4: 1.......5334.1...2......4
 4: 1.......5334..2..2...3...
 4: 1.......5334..2..2......4
 4: 1.......533.51...2......4
 4: 1.......533...2..2...3..4
 4: 1.......53.451...2...3...
 4: 1.......53.451...2......4
 4: 1.......53.45.2..2...3...
 4: 1.......53.45.2..2......4
 4: 1.......53.45....2.1....4
 2: 1.......53.45....2...3.2.
 0: 1.......53.45....2.....24
 4: 1.......53.4.1...23..3...
 0: 1.......53.4.1...2..53...
 2: 1.......53.4.1...2..5...4
 4: 1.......53.4..2..23..3...
 2: 1.......53.4....52.....24
 4: 1.......53..512..2...3...
 4: 1.......53....2..23..3..4
 4: 1.......5.345....2.1....4
 4: 1.......5.34.1...2.1....4
 4: 1.......5.34..2..2.1....4
 4: 1.......5.3.51...2.1....4
 4: 1.......5.3...2..2.1.3..4
 4: 1.......5..45.2..2.1....4
 4: 1.......5..4..245....31..
 2: 1.......5..4..24.2...31..
 4: 1.......5....1245..1.3...
 4: 1.......5....1245....31..
 4: 1.......5.....245..1.31..
 4: 1.......5.....2..231.3..4
 4: 1........3.45..4.2....12.
 4: 1........3.45....2....124
 4: 1........3.4.1..52..53...
 2: 1........3.4.1..52..5..2.
 4: 1........3.4.1...2.153...
 4: 1........3.4.1...2..531..
 4: 1........3.4.....2.1531..
 4: 1........3..5..452....12.
 4: 1........3..5..45.3...12.
 4: 1........3..5..45..1..12.
 4: 1........3..5..4..31..12.
 4: 1........3..5...523...12.
 4: .234..14..3........1...2.
 4: .234..1..3.4.....2..5....
 4: .234..1..3...1...2..5....
 4: .234...4..3..1.....1...2.
 4: .234....5.3.5....2......4
 4: .234....5.3......2....1.4
 4: .234....5.....24...1..1..
 4: .234.....3.4....52..5....
 4: .234.....3...1...2..5.1..
 4: .23.5.1.5.....24.....3...
 4: .23.5.1.5.....24......1..
 4: .23.5.1..3...1...2..5....
 4: .23.5..4..3..1.....1...2.
 4: .23.5..4......2...315....
 4: .23.5..4......2...3.5...4
 4: .23.5...5..4..24.....3...
 4: .23.5...5.....24...1..1..
 4: .23.5....3...1...2..5.1..
 2: .23...14.....12...3.5....
 0: .23...14......2...315....
 4: .23...1.5....124...1.....
 4: .23...1.5....124......1..
 2: .23...1..3..51.4.......2.
 4: .23....45.3.5..4...1.....
 4: .23....45.3.5...5..1.....
 4: .23....45.3.....5..1..1..
 4: .23....4.3..51....3.5....
 4: .23....4.3..51......53...
 4: .23....4.3...12...3.5....
 4: .23....4.3...12.....53...
 4: .23....4.3....2...315....
 4: .23....4.3........315...4
 4: .23....4..3...2....153...
 4: .23....4..3.......315...4
 4: .23....4..3........153..4
 4: .23....4.....12...3.53...
 4: .23....4......2...3153...
 4: .23....4......2...315...4
 2: .23.....53...124......1..
 4: .23.....5.3.5..4.2......4
 4: .23.....5.3.5..4...1..1..
 4: .23.....5.3.5..4......1.4
 0: .23.....5.3...24...1..1..
 2: .23.....5.3...24......1.4
 4: .23.....5.3....45.3...1..
 4: .23.....5.3....45..1..1..
 4: .23.....5.3....4.2.1..1..
 4: .23.....5.3....4.2....1.4
 4: .23.....5.3....4..31..1..
 4: .23.....5.3.....52.1..1..
 4: .23.....5....124...1..1..
 4: .2.45.14..3.....5......2.
 4: .2.45.14..3........1...2.
 4: .2.45.1.5.....24......1..
 4: .2.45..4..3..1.....1...2.
 4: .2.45..4..3.....5....3.2.
 4: .2.45...5.....24...1..1..
 4: .2.45....3..51.4.......2.
 4: .2.45....3..5..4..3....2.
 4: .2.45....3...1...2..5.1..
 2: .2.4..14......2...315....
 2: .2.4..1.5.3......2.1....4
 0: .2.4..1.5.3......2....1.4
 4: .2.4..1..3...1...2.15....
 4: .2.4..1..3.......2.15.1..
 4: .2.4...45.34.....2.1.....
 4: .2.4...45.34......31.....
 4: .2.4...45.3.5.........1.4
 4: .2.4...45.3......2.1....4
 4: .2.4...45.3......2....1.4
 4: .2.4...45.3.......31....4
 2: .2.4...4.3...1...2.15....
 4: .2.4....53...1.4.....31..
 4: .2.4....53.....4..3.5.1..
 4: .2.4....53.....4..3..31..
 4: .2.4....5.345..4......1..
 4: .2.4....5.34...4.2....1..
 4: .2.4....5.34.....2.1....4
 4: .2.4....5.34.....2....1.4
 4: .2.4....5.3.5..4......1.4
 4: .2.4....5.3.5....2....1.4
 2: .2.4.....3..51.4.2..5....
 4: .2.4.....3..51.4..3.5....
 4: .2.4.....3..51.4....5..2.
 4: .2.4.....3..5..4..3.5..2.
 0: .2.4.....3...1.4.2..5.1..
 4: .2.4.....3...1.4..3.5.1..
 4: .2.4.....3...1.4....531..
 4: .2.4.....3...1.4....53..4
 4: .2.4.....3...1.4....5.12.
 4: .2.4.....3...1.4....5.1.4
 4: .2.4.....3...1.4.....312.
 4: .2.4.....3...1...2.15.1..
 4: .2..5.14..3..1........12.
 4: .2..5.14..3........1..12.
 2: .2..5.1.5.3......2....1.4
 0: .2..5.1..3..51.4.......2.
 2: .2..5.1..3..5..4......12.
 2: .2..5..45.3........1..12.
 4: .2..5..4.33..1......5...4
 4: .2..5..4.3.4.1.....15....
 4: .2..5..4.3.4.1......5...4
 4: .2..5..4..345......15....
 4: .2..5..4..34.1.....15....
 4: .2..5..4..3.51.....15....
 4: .2..5..4..3..12....15....
 0: .2..5..4..3..1.....15..2.
 4: .2..5..4..3..1.....15...4
 4: .2..5..4..3..1.....1..12.
 4: .2..5..4..3...2...315....
 4: .2..5..4..3...2...3.5...4
 2: .2..5..4..3.......315..2.
 4: .2..5..4..3.......315...4
 4: .2..5..4...4.12....15....
 4: .2..5...53..51.4..3......
 4: .2..5...53..51.4.......2.
 4: .2..5...53..5..4......12.
 4: .2..5...53..5..4......1.4
 4: .2..5...53.....45.....12.
 4: .2..5...53.....45.....1.4
 4: .2..5....3..51.45......2.
 4: .2..5....3..51.4..3.5....
 4: .2..5....3..51.4..3....2.
 4: .2..5....3..5..45.....12.
 4: .2..5....3...1.45.3.5....
 4: .2..5....3...1.45...5..2.
 4: .2....14..3.....5..1..12.
 4: .2....1.5....124.....31..
 4: .2....1..3.4.1...2.15....
 4: .2.....45.34......31....4
 4: .2.....45.3.5..4...1..1..
 4: .2.....45.3.5..4......1.4
 4: .2.....45.3.5...5..1..1..
 2: .2.....45.3..1.....15...4
 4: .2.....45.3....45.3...1..
 4: .2.....45.3....4.2.1..1..
 4: .2.....45.3....4.2.1....4
 4: .2.....45.3....4.2....1.4
 4: .2.....45.3....4..31..1..
 4: .2.....45.3....4..31....4
 4: .2.....45.3.....523.....4
 4: .2.....45.3.....52.1..1..
 4: .2.....45.3.....52.1....4
 4: .2.....45.3.....5.31..1..
 4: .2.....45.3.....5.31....4
 0: .2.....45.3.....5..1..12.
 2: .2.....45.3.....5..1...24
 2: .2.....45.3.......315.1..
 0: .2.....45.3.......315...4
 4: .2.....4.3345......15....
 4: .2.....4.33.51....3.5....
 4: .2.....4.33.51.....15....
 4: .2.....4.33..12...3.5....
 4: .2.....4.33..12....15....
 4: .2.....4.33..1.....15...4
 4: .2.....4.33...2...315....
 4: .2.....4.33.......315...4
 4: .2.....4.3.451....3.5....
 4: .2.....4.3.451.....15....
 4: .2.....4.3.45.2...3.5....
 4: .2.....4.3.4.12...3.5....
 4: .2.....4.3.4.12....15....
 2: .2.....4.3.4.1...23.5....
 0: .2.....4.3.4.1...2.15....
 4: .2.....4.3.4.1.....15...4
 0: .2.....4.3..51.4..3.5....
 2: .2.....4.3..51.4...15....
 4: .2.....4.3..51....3.53...
 2: .2.....4.3...1.4..3.5.1..
 4: .2.....4..34....5..1..12.
 4: .2.....4..34.......1.312.
 4: .2.....4..3.51....3.53...
 4: .2.....4..3..12...3.53...
 2: .2.....4..3..1..5..15..2.
 4: .2.....4..3..1..5..1..12.
 4: .2.....4..3...2...3153...
 4: .2.....4..3.....5..1.312.
 4: .2.....4..3.......3153..4
 4: .2.....4...45.2...3.53...
 4: .2.....4...4.12...3.53...
 4: .2.....4....512...3.53...
 2: .2......533.5..4...1..1..
 0: .2......533.5..4......1.4
 2: .2......533..1.4......1.4
 4: .2......53..51.4..3.5....
 4: .2......53..51.4....5..2.
 2: .2......53..5.24.....31..
 4: .2......53..5..45.....1.4
 4: .2......53..5..4....5.12.
 4: .2......53..5..4....5.1.4
 4: .2......53..5..4.....312.
 4: .2......53..5..4.....31.4
 4: .2......53..5..4.....3.24
 0: .2......53...124.....31..
 4: .2......53...1.4..3.5.1..
 4: .2......53...1.4..3..31..
 4: .2......53...1.4....53..4
 4: .2......53...1.4....5.12.
 4: .2......53...1.4....5.1.4
 4: .2......53...1.4.....312.
 4: .2......53...1.4.....31.4
 4: .2......5.345..4......1.4
 4: .2......5.34...4.2.1....4
 4: .2......5.34...4.2....1.4
 4: .2......5.34...4..31....4
 4: .2......5.34....523.....4
 4: .2......5.34....52.1....4
 4: .2......5.34.....231....4
 2: .2......5.3...24...1.31..
 4: .2......5..4.1245.....1..
 4: .2......5..4.124.....31..
 4: .2......5....1245....31..
 4: .2......5....124...1.31..
 2: .2.......3.4.1.4.2..5.1..
 4: .2.......3.4.1..52.15....
 4: .2.......3.4.1...2.153...
 4: .2.......3.4.1...2.15.1..
 4: .2.......3..51.45.3.5....
 4: .2.......3..51.45...5..2.
 4: .2.......3..5..45...5.12.
 4: .2.......3..5..45...5.1.4
 4: .2.......3..5..45....312.
 4: .2.......3..5..45....3.24
 4: .2.......3..5..45.....124
 4: .2.......3...1..52.153...
 4: ..345.14..3.....5......2.
 4: ..345.14..3........1...2.
 4: ..345.1.5.....24.....3...
 4: ..345.1.5.....24......1..
 4: ..345.1..3.4.....2..5....
 4: ..345.1..3...1...2..5....
 4: ..34..14...4..2..2..5....
 4: ..34..14...4..2.....5.1..
 4: ..34..14......24.2..5....
 4: ..34..14......24....5.1..
 4: ..34..1.5....124...1.....
 4: ..34..1.5....124......1..
 4: ..34..1.5.....24...1..1..
 2: ..34..1.5.....24....53...
 0: ..34..1.5.....24....5.1..
 0: ..34..1..3.4..2..2..5....
 4: ..34..1..3.4....52..5....
 4: ..34..1..3.4.....2..53...
 2: ..34..1..3...12..2..5....
 4: ..34..1..3......52..53...
 2: ..34..1...3...2..2..5...4
 4: ..34..1....45.2..2..5....
 4: ..34..1....4..24....5.1..
 4: ..34..1....4..2..2..5.1..
 4: ..34..1....4..2..2..5...4
 4: ..34..1.....5.24.2..5....
 4: ..34..1.....5.24....5.1..
 2: ..34..1.....5.24....5..2.
 4: ..34..1.......24.2..5...4
 4: ..34..1.......24....5.1.4
 4: ..3.5.14..3..1.....1...2.
 4: ..3.5.14..3..1........12.
 2: ..3.5.14..3....45......2.
 0: ..3.5.14..3....4...1...2.
 4: ..3.5.14..3........1..12.
 4: ..3.5.1.5..4..245........
 4: ..3.5.1.5..4..24.....3...
 4: ..3.5.1.5.....245....3...
 0: ..3.5.1.5.....24.....3.2.
 2: ..3.5.1.5.....24......12.
 4: ..3.5.1..33...24.......2.
 4: ..3.5.1..33....4...1...2.
 4: ..3.5.1..3....24.....3.2.
 4: ..3.5.1..3.....4...1.3.2.
 4: ..3.5.1...3...24..3....2.
 4: ..3.5.1...3...24.......24
 2: ..3.5.1...3....4.2.....24
 4: ..3.5.1...3....4..31...2.
 4: ..3.5.1...3....4...1.3.2.
 4: ..3.5.1...3....4...1...24
 2: ..3.5.1.......24..3.5..2.
 4: ..3.5.1.......24..3..3.2.
 4: ..3.5.1.......24...1.3.2.
 4: ..3.5.1.......24.....3.24
 4: ..3...14....5.2...315....
 4: ..3...14......245.3.5....
 4: ..3...14......245..15....
 4: ..3...14......24.23.5....
 4: ..3...14......24..3.5.1..
 4: ..3...14......2.5.315....
 4: ..3...14......2..2315....
 4: ..3...14......2...315.1..
 2: ..3...1.5...5.24.....3.2.
 2: ..3...1.5.....24..3.5.1..
 4: ..3...1..3345..4.......2.
 4: ..3...1..33.5.24.......2.
 4: ..3...1..3.451.4.......2.
 4: ..3...1..3.45..4..3....2.
 4: ..3...1..3.45..4.....3.2.
 4: ..3...1..3.4.124.......2.
 4: ..3...1..3..5124.......2.
 4: ..3...1..3..5.24.....3.2.
 4: ..3...1...345..4..3....2.
 4: ..3...1...3.5.24..3....2.
 4: ..3...1...3...24...1...24
 4: ..3...1....45.24..3....2.
 4: ..3...1....4.124..3....2.
 4: ..3...1....4..24.2..5...4
 4: ..3...1....4..24....5.1.4
 4: ..3...1.....5124..3....2.
 4: ..3...1.....5.245.3.5....
 4: ..3...1.....5.245..15....
 4: ..3...1.....5.24.23.5....
 4: ..3...1.....5.24..315....
 4: ..3...1.....5.24..3.5.1..
 0: ..3...1.....5.24..3.5..2.
 4: ..3...1.....5.24..3..3.2.
 4: ..3...1.....5.2..2315....
 4: ..3...1.......24...1.3.24
 4: ...45.14..34....5......2.
 4: ...45.14..34.........3.2.
 0: ...45.14..3.....52.....2.
 4: ...45.14..3.....5....3.2.
 2: ...45.14..3......2.1...2.
 4: ...45.1.5.3..1..52.......
 4: ...45.1.5.3..1...2..5....
 4: ...45.1.5.3.....52.....2.
 4: ...45.1.5.3......2..5..2.
 2: ...45.1..334.....2..5....
 0: ...45.1..33..1...2..5....
 4: ...45.1..3...1...2.15....
 4: ...45.1..3...1...2..5.1..
 4: ...45.1..3.......2.15.1..
 4: ...45.1...3.51...2..5....
 2: ...45.1...3.5..4.2.....2.
 4: ...45.1...3.5...52.....2.
 4: ...45.1...3.5....2..5..2.
 4: ...45.1...3..1..52..5....
 4: ...45.1...3..1..52.....2.
 4: ...45.1...3..1...23.5....
 2: ...45.1...3...2..23.5....
 4: ...45.1...3.....523....2.
 4: ...45.1...3......23.5..2.
 4: ...4..14...4..2.5.3.5....
 4: ...4..14...4..2..23.5....
 4: ...4..14......245.3.5....
 4: ...4..14......24.23.5....
 4: ...4..14......2.52.15....
 4: ...4..14......2.5.315....
 4: ...4..14......2.5.3.5...4
 4: ...4..14......2..2315....
 4: ...4..1.5.3..1...2..5...4
 4: ...4..1.5.3..1...2....1.4
 4: ...4..1.5.3......23...1.4
 4: ...4..1.5.3......2..531..
 4: ...4..1.5.3......2..53..4
 4: ...4..1.5.3......2..5..24
 4: ...4..1.5.3......2...31.4
 4: ...4..1.5.3......2....124
 2: ...4..1..33..1...2..5...4
 2: ...4..1..3.4..2..23.5....
 4: ...4..1...3.51..52..5....
 4: ...4..1...3.5...52..5..2.
 4: ...4..1...3..1...23.5...4
 0: ...4..1...3...2..23.5...4
 4: ...4..1...3......23.531..
 4: ...4..1...3......23.53..4
 4: ...4..1...3......23.5.1.4
 4: ...4..1...3......23.5..24
 4: ...4..1...3......23...124
 4: ...4..1....45.2..2..5.1..
 4: ...4..1....4..2..23.5...4
 4: ...4..1.....5.24.2..5.1..
 4: ...4..1.......245.3.5...4
 4: ...4..1.......24.23.5...4
 4: ...4..1.......2.523.5...4
 4: ...4..1.......2.52.15...4
 4: ...4..1.......2..2315...4
 2: ....5.14..3.5..4...1...2.
 2: ....5.14..3.....52.....24
 4: ....5.1.5.3.5....2...3..4
 4: ....5.1.5.3.....52...3..4
 4: ....5.1.5.3.....52.....24
 4: ....5.1.5.3......2..53..4
 4: ....5.1.5.3......2..5..24
 4: ....5.1.5.3......2...312.
 4: ....5.1.5.3......2...31.4
 4: ....5.1.5.3......2....124
 4: ....5.1..3345..4.......2.
 4: ....5.1..334.1.4.......2.
 4: ....5.1..33.5.24.......2.
 4: ....5.1..33.5..4...1...2.
 4: ....5.1..3.451.4.......2.
 4: ....5.1..3..5124.......2.
 4: ....5.1..3..51.4...1...2.
 4: ....5.1..3..51.4.......24
 4: ....5.1...345..4.......24
 4: ....5.1...34.1.4.......24
 4: ....5.1...3.51.4.......24
 4: ....5.1...3.5.24.......24
 0: ....5.1...3.5..4.2.....24
 4: ....5.1...3.5..4...1...24
 4: ....5.1...3.5...52.....24
 4: ....5.1...3.5....2..53..4
 4: ....5.1...3.5....2..5..24
 4: ....5.1...3.5....2...312.
 4: ....5.1...3.5....2...3.24
 4: ....5.1...3.5....2....124
 4: ....5.1...3..1..523....2.
 4: ....5.1...3..1...23.5..2.
 4: ....5.1...3...24..3..3.2.
 4: ....5.1...3....4..31.3.2.
 4: ....5.1.....5124.......24
 4: ......14..34....5..1..12.
 4: ......14...4..2.5.3.5...4
 4: ......14...4..2..23.5...4
 4: ......14....5.24..3.5.1..
 4: ......14....5.2...315.1..
 4: ......1.5.3.5...52...3..4
 4: ......1.5.3.5...52.....24
 4: ......1.5.3..1...23.5...4
 4: ......1.5.3..1...23...1.4
 4: ......1.5....1245....31..
 4: ......1..33.5..4...1...24
 4: ......1..3.45..4..3..3.2.
 4: ......1..3.4.1...2.153...
 4: ......1..3..51.4...1...24
 4: ......1..3..5.24..3..3.2.

5.2.10
Hidden Text: Show
Code: Select all
 2: 1234..14..34.........3.2.
 2: 1234..14..3..1........12.
 2: 123.5.1..3......52..53...
 2: 123.5.1..3.......2.15.1..
 0: 123..214..3..........312.
 0: 123..214...4...4.2.1.....
 0: 123..21..334..2....1.....
 0: 123..21..3.......2..531..
 2: 12.45.1.5..4..245........
 2: 12.45.1.5....124...1.....
 0: 12.4.214..34.1.........2.
 0: 12.4.214.......452....1..
 0: 12.4.21.5..4.124.........
 0: 12.4.21.5.......5...5.12.
 0: 12..521.5....1......53.2.
 0: 12..521.5.....245..1.....
 0: 12..521..33..12......3...
 0: 12..521..3......52.15....
 2: 12....14..34.1.......312.
 2: 12....1.5..4.1245..1.....
 2: 12....1..3......52.1531..
 0: 1.34.2.4.3.....4.23....2.
 2: 1.34...4.3.....4.2....124
 0: 1.3.52..533.5.2..2.......
 2: 1.3.5...533...2..231.....
 2: 1.3....4.3.....4.231..12.
 2: 1.3.....533.512..23......
 0: 1..452.45.....2.....5..24
 2: 1..45..45...512.....5..2.
 2: 1..4...45....12.....5.124
 2: 1..4...4.3.....4.231...24
 2: 1...5..45...5.2.....5.124
 2: 1...5...533.512..2.1.....
 0: 1....2.45...512.....5.12.
 0: 1....2.4.3.....4.2.1..124
 0: 1....2..533..12..231.....
 0: .234.2.45.3....4.23......
 2: .234...45.345..4.2.......
 0: .23.52.4.33.5.2.....5....
 2: .23.5..4.33...2.....53..4
 2: .23....45.3.5..4523......
 2: .23....4.3345.2.....53...
 0: .2.452..53.....4....5..24
 2: .2.45...53.....45.3.5..2.
 2: .2.4...45.34...4523......
 2: .2.4....53.....4..3.53.24
 2: .2..5..4.3345.2.....5...4
 2: .2..5...53.....45...53.24
 0: .2...2.45.345..452.......
 0: .2...2.4.334..2.....53..4
 0: .2...2..53.....45.3.53.2.
 0: ..3..2.4.334..24.2.1.....
 0: ...4.2.45......452..5.12.
 0: ....52..533..12.....53.2.
 0: .....214...45.2452..5....
 0: .....214......24.2.15.1.4
 0: .....21.5.3.51...2..5.12.
 0: .....21.5.3.....523.53.2.
 0: .....21..334..24.....3.24
 0: .....21..33..124..31...2.
 0: .....2.45...5..4.23.5..24
 0: .....2.4.33.5.24.23.....4
 0: .....2..533.5.2...3.5..24
 2: ......14...45.24.2..5.1.4
 2: ......14...4..2452.15...4
 2: ......14....5.2452.15.1..
 2: ......1.5.3.51..523.5..2.
 2: ......1.5.3.5...52..5312.
 2: ......1.5.3..1...23.5312.
 2: ......1..334.124..3..3.2.
 2: ......1..334.124...1...24
 2: ......1..33...24..31.3.24
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: Hard 5*5 Latin Squares

Postby qiuyanzhe » Thu Dec 27, 2018 9:53 am

Code: Select all
Min/After Singles      Code    Symmetry Count Comment
7/7:   12....14......2...3.5....    6     12
8/8:   12.....4.....12...3.53...    2     36
10/10: 123..214..3..........312.    3     24
       123..214...4...4.2.1.....    6     12  The two 10/10s are only different in a UR in the givens.
TOTAL-------------------------------------84

8/10:  12.......3..51.45......2.    1     72
10/12: 12.45.1.5..4..245........    2     36  These /12's are essentially the same.
8/12:  123...1.5.....24.....3...    2     36
       .23.5...5..4..24.....3...    2     36
       123.....5..4..24.....3...    1     72
       1.34....5..4..24.....3...    1     72
       1.34..1.5.....24.....3...    1     72
       1.3.5...5..4..24.....3...    1     72
       1..45.1.5.....24.....3...    1     72
       1..45...5..4..24.....3...    1     72
       ..345.1.5.....24.....3...    1     72
TOTAL------------------------------------684
More:(Puzzles that cannot be deduced from a minimal puzzle)

11     123...14....512.5.3.5....   3    24
9      123...14......2...315....   2    36
8      123...14......2...3.5....   1    72


edit: corrected more(8)
qiuyanzhe
 
Posts: 94
Joined: 21 August 2017
Location: China

Re: Hard 5*5 Latin Squares

Postby jco » Wed Jan 31, 2024 9:51 pm

pattern 1: 7 givens
Code: Select all
12...
2.3..
.4...
...1.
....5

//Uniqueness Allowed: Gurth's_Symmetrical_Placement
//Symmetry:6
//Uniqueness Disabled: (unknown)


Difficulty rating: SER = 8,3

Code: Select all
.------------------.
|1   2   .   .   . |
|2   .   3   .   . |
|.   4   .   .   . |
|.   .   .   1   . |
|.   .   .   .   5 | uniqueness allowed (Gurth's symmetrical placement)
'------------------'
(5x5 Latin squares puzzle by qiuyanzhe)

Rows are labelled 1 to 5 from bottom to top.
Columns are labelled a to e from left to right.

After no placements

STEP 1
Code: Select all
.----------------------.
| 1   2   45  345  34  |
| 2  *15  3  *45   14  |
| 35  4   125 235  123 |
| 345 35  245 1    23-4|
|*34 *13  124 23-4 5   |
'----------------------'

1. (4=5)d4 - (5=1)b4 - (1=3)b1 - (3=4)a1 => -4 d1 [& -4 e3 by symmetry]
-------
STEPS 2,3
Code: Select all
.-------------------------.
|1    2    45  (3)4-5 (34)|
|2   (1)5  3    45    (14)|
|35   4    125  235    123|
|345  35   245  1      2-3|
|34  (13)  124  2-3    5  |
'-------------------------'

2. (3=1)b1 - (1)b4 = (1-4)e4 = (4-3)e5 = (3)d5 => -3 d1 (+2d1, +2 e2 by symmetry)
3. (3)d5 = (3-4)e5 = (4)e4 - (4=5)d4 => -5 d5 [-5 a2 by symmetry; lclste]

------------ solving without using symmetry and uniqueness -------------

STEP 1
Code: Select all
+----------------------+
| 1   2   45  345  34  |
| 2  b15  3  a45   14  |
| 35  4   125 235  123 |
| 345 35  245 1    234 |
|d34 c13  124 23-4 5   | LS
+----------------------+
1. (4=5)d4 - (5=1)b4 - (1=3)b1 - (3=4)a1 => -4 d1
-----
STEP 2
Code: Select all
+-----------------------+
| 1    2   45  345 a34  |
| 2   c15  3   45  b14  |
| 35   4   125 235  123 |
| 345 d35  245 1    24-3|
| 34   13  124 23   5   | LS
+------ ----------------+
2. (3=4)e5 - (4=1)e4 - (1=5)b4 - (5=3)b2 => -3 e2
-------
STEP 3
Code: Select all
+----------------------------+
| 1    2    45    45-3 cC34  |
| 2    15   3     45     14  |
| 35   4  A[2]15  235   B123 |
| 345  35 a[2]45  1     b24  |
| 34   13 u[2]14 v23     5   | LS
+----------------------------+
Kraken Column (2)c123 => -3 d5; NP(45)e45 => -5e3
(2)c1 - (2=3)d1
(2)c2 - (2=4)e2 - (4=3)e5
(2-1)c3 = (1-3)e3 = (3)e5
--------
STEP 4
Code: Select all
+-----------------------------+
| 1     2   f45   e45    *3   |
| 2    c15   3    d45     14  |
| 35    4    215   23     12  |
|a345  b35   245   1      24  |
|h4-3   13  g124   23     5   | LS
+-----------------------------+
(3)a2 = (3-5)b2 = (5)b4 - (5)d4 = (5)d5 - (5=4)c5 - (4)c1 = (4)a1 => -3 a1 [+4 a1; NP(35)ab2 => -5 c2]
--------
STEP 5
Code: Select all
+----------------------------+
| 1    2    45    45    *3   |
| 2    15   3     45     14  |
| 35   4   b215   35-2  a12  |
| 35   35   24    1      24  |
|*4    13  c12   d23     5   | LS
+----------------------------+
M-wing (2=1)e3 - (1)c3 = (1-2)c1 = (2)d1 => -2 d3; ste

Nice puzzle!

@1to9only: thank you! (LatinExplainer NxN [SER] available!).

EDIT: added description of chess notation at the beginning.
Last edited by jco on Mon Feb 05, 2024 8:46 pm, edited 1 time in total.
JCO
jco
 
Posts: 741
Joined: 09 June 2020

Re: Hard 5*5 Latin Squares

Postby denis_berthier » Fri Feb 02, 2024 12:04 pm

.
solved in Z4:
Code: Select all
Resolution state after Singles:
1   2   45  345 34 
2   15  3   45  14 
35  4   125 235 123
345 35  245 1   234
34  13  124 234 5   


Code: Select all
biv-chain[4]: c1n5{r3 r4} - r4c2{n5 n3} - r5c2{n3 n1} - c3n1{r5 r3} ==> r3c3≠5
biv-chain[4]: c2n3{r4 r5} - r5n1{c2 c3} - r3c3{n1 n2} - r4n2{c3 c5} ==> r4c5≠3
biv-chain[4]: r2c4{n4 n5} - c2n5{r2 r4} - r4n3{c2 c1} - r5c1{n3 n4} ==> r5c4≠4
z-chain[4]: c4n4{r1 r2} - c4n5{r2 r3} - r3c1{n5 n3} - c5n3{r3 .} ==> r1c4≠3
hidden-single-in-a-row ==> r1c5=3
naked-pairs-in-a-row: r3{c3 c5}{n1 n2} ==> r3c4≠2
singles ==> r5c4=2, r3c4=3, r3c1=5
biv-chain[4]: r1n5{c3 c4} - c4n4{r1 r2} - c5n4{r2 r4} - r4n2{c5 c3} ==> r4c3≠5
stte
denis_berthier
2010 Supporter
 
Posts: 4205
Joined: 19 June 2007
Location: Paris


Return to General