.
First trying to get as many Subsets and Finned Fish as possible:
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 1248 289 5 ! 48 3 18 ! 289 7 6 !
! 1468 689 3 ! 4678 2 1678 ! 89 5 489 !
! 2468 7 2468 ! 9 68 5 ! 1 3 248 !
+-------------------+-------------------+-------------------+
! 5 68 6789 ! 2 4 3 ! 6789 89 1 !
! 3 1 26789 ! 678 5 6789 ! 26789 4 289 !
! 2678 4 26789 ! 678 1 6789 ! 3 289 5 !
+-------------------+-------------------+-------------------+
! 9 5 2468 ! 3 68 268 ! 248 1 7 !
! 2478 28 1 ! 5 789 28 ! 2489 6 3 !
! 2678 3 2678 ! 1 6789 4 ! 5 289 289 !
+-------------------+-------------------+-------------------+
naked-pairs-in-a-row: r8{c2 c6}{n2 n8} ==> r8c7 ≠ 8, r8c7 ≠ 2, r8c5 ≠ 8, r8c1 ≠ 8, r8c1 ≠ 2
naked-pairs-in-a-column: c5{r3 r7}{n6 n8} ==> r9c5 ≠ 8, r9c5 ≠ 6
whip[1]: r9n6{c3 .} ==> r7c3 ≠ 6
hidden-pairs-in-a-column: c7{n6 n7}{r4 r5} ==> r5c7 ≠ 9, r5c7 ≠ 8, r5c7 ≠ 2, r4c7 ≠ 9, r4c7 ≠ 8
finned-x-wing-in-columns: n8{c5 c7}{r7 r3} ==> r3c9 ≠ 8
finned-x-wing-in-columns: n2{c7 c2}{r1 r7} ==> r7c3 ≠ 2
swordfish-in-columns: n2{c2 c6 c7}{r1 r8 r7} ==> r1c1 ≠ 2
hidden-pairs-in-a-row: r1{n2 n9}{c2 c7} ==> r1c7 ≠ 8, r1c2 ≠ 8
whip[1]: b3n8{r2c9 .} ==> r2c1 ≠ 8, r2c2 ≠ 8, r2c4 ≠ 8, r2c6 ≠ 8
finned-swordfish-in-columns: n6{c2 c7 c4}{r2 r4 r5} ==> r5c6 ≠ 6
- Code: Select all
CURRENT RESOLUTION STATE:
148 29 5 48 3 18 29 7 6
146 69 3 467 2 167 89 5 489
2468 7 2468 9 68 5 1 3 24
5 68 6789 2 4 3 67 89 1
3 1 26789 678 5 789 67 4 289
2678 4 26789 678 1 6789 3 289 5
9 5 48 3 68 268 248 1 7
47 28 1 5 79 28 49 6 3
2678 3 2678 1 79 4 5 289 289
From this point, a few bivalue-chains of length ≤ 3 are enough:
biv-chain[2]: r5n2{c3 c9} - c8n2{r6 r9} ==> r9c3 ≠ 2
biv-chain[3]: r3c9{n4 n2} - c7n2{r1 r7} - r7n4{c7 c3} ==> r3c3 ≠ 4
singles ==> r7c3 = 4, r8c1 = 7, r8c5 = 9, r8c7 = 4, r9c5 = 7
whip[1]: c7n9{r2 .} ==> r2c9 ≠ 9
biv-chain[3]: r9c3{n6 n8} - c2n8{r8 r4} - c2n6{r4 r2} ==> r3c3 ≠ 6
biv-chain[3]: r3c3{n8 n2} - c2n2{r1 r8} - c2n8{r8 r4} ==> r4c3 ≠ 8, r5c3 ≠ 8, r6c3 ≠ 8
biv-chain[2]: b4n8{r6c1 r4c2} - r8n8{c2 c6} ==> r6c6 ≠ 8
biv-chain[3]: r3c5{n6 n8} - c3n8{r3 r9} - b7n6{r9c3 r9c1} ==> r3c1 ≠ 6
stte