shye wrote:should be a lot easier than the rating suggests though
SE = 7.5
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 89 2 3 ! 1 6 5 ! 4 7 89 !
! 5 7 4 ! 29 2389 389 ! 3689 689 1 !
! 1 6 89 ! 479 3789 3489 ! 3589 589 2 !
+-------------------+-------------------+-------------------+
! 3 4 189 ! 69 5 2 ! 1689 689 7 !
! 2689 589 2589 ! 3 1 7 ! 5689 25689 4 !
! 2679 59 12579 ! 8 4 69 ! 1569 2569 3 !
+-------------------+-------------------+-------------------+
! 24789 1 25789 ! 24579 2789 489 ! 89 3 6 !
! 789 3 6 ! 79 789 1 ! 2 4 5 !
! 2489 589 2589 ! 24569 2389 34689 ! 7 1 89 !
+-------------------+-------------------+-------------------+
152 candidates.
Indeed quite easy if one doesn't add arbitrary conditions on the number of steps. Can be solved in Z3:
simplest-first path in Z3: Show biv-chain[2]: r1n8{c1 c9} - b9n8{r9c9 r7c7} ==> r7c1≠8
biv-chain[2]: r1n9{c1 c9} - b9n9{r9c9 r7c7} ==> r7c1≠9
biv-chain[2]: r8n8{c5 c1} - b1n8{r1c1 r3c3} ==> r3c5≠8
biv-chain[2]: c9n8{r9 r1} - b1n8{r1c1 r3c3} ==> r9c3≠8
biv-chain[2]: c9n9{r9 r1} - b1n9{r1c1 r3c3} ==> r9c3≠9
biv-chain[2]: c2n8{r5 r9} - b9n8{r9c9 r7c7} ==> r5c7≠8
biv-chain[3]: r8n8{c5 c1} - r1n8{c1 c9} - b9n8{r9c9 r7c7} ==> r7c5≠8, r7c6≠8
biv-chain[3]: r3n4{c4 c6} - r7c6{n4 n9} - b5n9{r6c6 r4c4} ==> r3c4≠9
biv-chain-rc[3]: r3c4{n4 n7} - r8c4{n7 n9} - r7c6{n9 n4} ==> r3c6≠4, r7c4≠4, r9c4≠4
singles ==> r3c4=4, r3c5=7
biv-chain[3]: r9n4{c1 c6} - r7c6{n4 n9} - b9n9{r7c7 r9c9} ==> r9c1≠9
biv-chain[3]: r7n8{c3 c7} - c9n8{r9 r1} - b1n8{r1c1 r3c3} ==> r4c3≠8, r5c3≠8
whip[1]: r4n8{c8 .} ==> r5c8≠8
biv-chain[3]: r6n1{c7 c3} - r4c3{n1 n9} - b5n9{r4c4 r6c6} ==> r6c7≠9
biv-chain[3]: r6n1{c7 c3} - r4c3{n1 n9} - r6c2{n9 n5} ==> r6c7≠5
z-chain-rc[3]: r9c3{n5 n2} - r5c3{n2 n9} - r6c2{n9 .} ==> r6c3≠5
z-chain[3]: b9n9{r7c7 r9c9} - r1n9{c9 c1} - r8n9{c1 .} ==> r7c4≠9
z-chain[3]: b9n9{r7c7 r9c9} - r1n9{c9 c1} - r8n9{c1 .} ==> r7c5≠9
singles ==> r7c5=2, r2c4=2
biv-chain-rc[3]: r7c1{n7 n4} - r7c6{n4 n9} - r8c4{n9 n7} ==> r8c1≠7, r7c4≠7
singles ==> r7c4=5, r8c4=7
naked-pairs-in-a-column: c1{r1 r8}{n8 n9} ==> r9c1≠8, r6c1≠9, r5c1≠9, r5c1≠8
hidden-single-in-a-block ==> r5c2=8
finned-x-wing-in-columns: n9{c2 c4}{r9 r6} ==> r6c6≠9
singles ==> r6c6=6, r4c4=9, r4c3=1, r9c4=6, r6c7=1, r5c1=6
finned-x-wing-in-columns: n9{c9 c1}{r1 r9} ==> r9c2≠9
stte
That makes a large number of steps, but the fewer steps method allows to find a solution still in Z3, with only 6 non-W1 steps:
biv-chain[3]: c2n8{r5 r9} - c9n8{r9 r1} - b1n8{r1c1 r3c3} ==> r5c3≠8, r4c3≠8whip[1]: r4n8{c8 .} ==> r5c7≠8, r5c8≠8
z-chain[3]: b1n9{r3c3 r1c1} - c9n9{r1 r9} - c2n9{r9 .} ==> r4c3≠9singles ==> r4c3=1, r6c7=1
biv-chain[3]: r8n8{c5 c1} - r1n8{c1 c9} - b9n8{r9c9 r7c7} ==> r7c5≠8, r7c6≠8z-chain[3]: b9n9{r7c7 r9c9} - r1n9{c9 c1} - r8n9{c1 .} ==> r7c6≠9singles ==> r7c6=4, r3c4=4, r3c5=7, r9c1=4
z-chain[3]: b9n9{r7c7 r9c9} - r1n9{c9 c1} - r8n9{c1 .} ==> r7c5≠9singles ==> r7c5=2, r2c4=2, r9c3=2
z-chain[3]: b1n9{r3c3 r1c1} - c9n9{r1 r9} - c2n9{r9 .} ==> r5c3≠9stte