- Code: Select all
.......39.....1..5..3.5.8....8.9...6.7...2...1..4.......9.8..5..2....6..4..7.....
Long ago (2008) I published on my website, now dead, a full solution for this very hard puzzle.
Recently, I was curious to see how “yzfwsf” ’s program would solve it. It is still unsolved, so I wanted to update my old solution and post it here.
I start with the first steps, needed later. As far as I could see, I have a lot of work to optimize the next steps, they will come in due time, likely in several more posts
The start PM for the puzzle
- Code: Select all
25678 14568 124567 |268 2467 4678 |1247 3 9
26789 4689 2467 |23689 23467 1 |247 2467 5
2679 1469 3 |269 5 4679 |8 12467 1247
---------------------------------------------------------
235 345 8 |135 9 357 |123457 1247 6
3569 7 456 |13568 136 2 |13459 1489 1348
1 3569 256 |4 367 35678 |23579 2789 2378
---------------------------------------------------------
367 136 9 |1236 8 346 |12347 5 12347
3578 2 157 |1359 134 3459 |6 14789 13478
4 13568 156 |7 1236 3569 |1239 1289 1238
Junior Exocet:Base Cells-r1c7,r2c7;Target Cells-r4c8,r4c9,r7c8,r7c9;Cross Cells-r347c123456
Target Cells Check: r7c9<>3
abi loop #27r12c7;#47r12c7 => #7r1c7
still possible in base 12 14 17 24
The PM after the JE
- Code: Select all
25678 14568 124567 |268 2467 4678 |124 3 9
26789 4689 2467 |23689 23467 1 |247 2467 5
2679 1469 3 |269 5 4679 |8 12467 1247
---------------------------------------------------------
235c 345c 8 |135b 9 357b |123457a 1247a 6
3569 7 456d |13568 136 2 |13459 1489 1348
1 3569 256d |4 367 35678 |23579 2789 2378
---------------------------------------------------------
367f 136f 9 |1236 8 346h |12347h 5 1247h
3578 2 157e |1359 134 3459 |6 14789 13478
4 13568 156e |7 1236 3569 |1239 1289 1238
The pairs of cells marked a,b,c,d,e,f play a key role.
17a =>35b =>24c => 56d => 17e => 36f
17f =>56e =>24d => 35c => 17b => 24a
In my path, the first part is to established false pairs needed later.
=======================> the main one is #17a
If 17a, (=>36f)
can’t be 17 in base so must be ‘1’+ 2|4 (+7r4c7)
‘h’ is now 24, not valid
Corollary 35b is not valid (35b-> 17a)
And false any upstream pair as
#3r4c4 6r5c5 ->35b
#3r4c4 1r5c4 ->35b
#3r4c6 6r6c5 ->35b
=================== #24 r7c79
if(24r7c79)
Can’t be 24 in base must be ‘1’ + 2|4
triplet 357 r4c467 ->24c -> 36f same conflict
Here is the point where I mark a pause to optimize the next pair eliminations

