Gold Leader, Standing By

Post puzzles for others to solve here.

Gold Leader, Standing By

Postby mith » Tue Nov 17, 2020 3:57 pm

Code: Select all
+-------+-------+-------+
| . 1 . | 2 . . | . . . |
| . . 3 | . . 4 | 5 . . |
| . 6 . | . 7 . | 8 1 . |
+-------+-------+-------+
| 1 . . | . 6 . | . 8 . |
| . . 4 | 5 . 2 | 3 . . |
| . . . | . . . | . . . |
+-------+-------+-------+
| 7 . . | . . . | . 6 . |
| . . 5 | . . 3 | 2 . . |
| . . . | . . . | . . . |
+-------+-------+-------+
.1.2.......3..45...6..7.81.1...6..8...45.23...........7......6...5..32...........
mith
 
Posts: 996
Joined: 14 July 2020

Re: Gold Leader, Standing By

Postby SteveG48 » Tue Nov 17, 2020 7:18 pm

Code: Select all
 *--------------------------------------------------------------------------------------*
 | 45       1        789      | 2        3589     5689     | 4679     3479     34679    |
 | 289      2789     3        |d1689    c189      4        | 5        279     d2679     |
 | 45       6        29       | 39       7        59       | 8        1        2349     |
 *----------------------------+----------------------------+----------------------------|
 | 1        23579    279      | 3479     6        79       | 479      8        24579    |
 | 689      789      4        | 5       b189      2        | 3        79      a179-6    |
 | 23689    235789   26789    | 134789   13489    1789     | 14679    24579    1245679  |
 *----------------------------+----------------------------+----------------------------|
 | 7        23489    1289     | 1489     124589   1589     | 149      6        134589   |
 | 689      489      5        | 146789   1489     3        | 2        479      14789    |
 | 23689    23489    12689    | 146789   124589   156789   | 1479     34579    1345789  |
 *--------------------------------------------------------------------------------------*


1r5c9 = r5c5 - 1r2c5 = (16)r2c49 => -6 r5c9 ; btte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4497
Joined: 08 November 2013
Location: Orlando, Florida

Re: Gold Leader, Standing By

Postby denis_berthier » Wed Nov 18, 2020 3:50 am

I find the same elimination r5c9 ≠ 6 than SteveG48, but with many simpler ones available before

Code: Select all
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin
***  Using CLIPS 6.32-r778
***********************************************************************************************
256 candidates, 1998 csp-links and 1998 links. Density = 6.12%
whip[1]: c2n4{r9 .} ==> r9c1 ≠ 4, r8c1 ≠ 4
whip[1]: c2n5{r6 .} ==> r6c1 ≠ 5
hidden-pairs-in-a-column: c1{n4 n5}{r1 r3} ==> r3c1 ≠ 9, r3c1 ≠ 2, r1c1 ≠ 9, r1c1 ≠ 8
finned-x-wing-in-rows: n1{r5 r8}{c9 c5} ==> r9c5 ≠ 1, r7c5 ≠ 1
finned-x-wing-in-rows: n2{r3 r4}{c9 c3} ==> r6c3 ≠ 2
swordfish-in-columns: n1{c3 c6 c7}{r9 r7 r6} ==> r9c9 ≠ 1, r9c4 ≠ 1, r7c9 ≠ 1, r7c4 ≠ 1, r6c9 ≠ 1, r6c5 ≠ 1, r6c4 ≠ 1
swordfish-in-columns: n3{c1 c5 c8}{r9 r6 r1} ==> r9c9 ≠ 3, r9c2 ≠ 3, r6c4 ≠ 3, r6c2 ≠ 3, r1c9 ≠ 3
swordfish-in-columns: n6{c3 c6 c7}{r6 r9 r1} ==> r9c4 ≠ 6, r9c1 ≠ 6, r6c9 ≠ 6, r6c1 ≠ 6, r1c9 ≠ 6
hidden-pairs-in-a-block: b6{r5c9 r6c7}{n1 n6} ==> r6c7 ≠ 9, r6c7 ≠ 7, r6c7 ≠ 4, r5c9 ≠ 9, r5c9 ≠ 7
hidden-pairs-in-a-column: c4{n1 n6}{r2 r8} ==> r8c4 ≠ 9, r8c4 ≠ 8, r8c4 ≠ 7, r8c4 ≠ 4, r2c4 ≠ 9, r2c4 ≠ 8
whip[1]: r8n7{c9 .} ==> r9c7 ≠ 7, r9c8 ≠ 7, r9c9 ≠ 7
finned-x-wing-in-columns: n7{c7 c3}{r1 r4} ==> r4c2 ≠ 7
finned-x-wing-in-rows: n7{r5 r2}{c2 c8} ==> r1c8 ≠ 7
swordfish-in-rows: n7{r2 r5 r8}{c9 c2 c8} ==> r6c9 ≠ 7, r6c8 ≠ 7, r6c2 ≠ 7, r4c9 ≠ 7, r1c9 ≠ 7
hidden-triplets-in-a-column: c9{n1 n6 n7}{r8 r5 r2} ==> r8c9 ≠ 9, r8c9 ≠ 8, r8c9 ≠ 4, r2c9 ≠ 9, r2c9 ≠ 2
hidden-triplets-in-a-block: b9{r7c9 r9c8 r9c9}{n3 n5 n8} ==> r9c9 ≠ 9, r9c9 ≠ 4, r9c8 ≠ 9, r9c8 ≠ 4, r7c9 ≠ 9, r7c9 ≠ 4
swordfish-in-rows: n8{r2 r5 r8}{c5 c2 c1} ==> r9c5 ≠ 8, r9c2 ≠ 8, r9c1 ≠ 8, r7c5 ≠ 8, r7c2 ≠ 8, r6c5 ≠ 8, r6c2 ≠ 8, r6c1 ≠ 8, r1c5 ≠ 8
naked-triplets-in-a-block: b2{r1c5 r3c4 r3c6}{n5 n3 n9} ==> r2c5 ≠ 9, r1c6 ≠ 9, r1c6 ≠ 5
hidden-triplets-in-a-row: r1{n6 n7 n8}{c6 c7 c3} ==> r1c7 ≠ 9, r1c7 ≠ 4, r1c3 ≠ 9
naked-pairs-in-a-block: b3{r1c7 r2c9}{n6 n7} ==> r2c8 ≠ 7
biv-chain-rn[3]: r2n6{c9 c4} - r2n1{c4 c5} - r5n1{c5 c9} ==> r5c9 ≠ 6
singles and whip[1] to the end
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gold Leader, Standing By

Postby DEFISE » Wed Nov 18, 2020 1:46 pm

Hi Denis,
Amazing, because we could also do directly:
whip[1]: c2n4{r9 .} ==> r9c1 ≠ 4, r8c1 ≠ 4
whip[1]: c2n5{r6 .} ==> r6c1 ≠ 5
hidden-pairs-in-a-column: c1{n4 n5}{r1 r3} ==> r3c1 ≠ 9, r3c1 ≠ 2, r1c1 ≠ 9, r1c1 ≠ 8
biv-chain-rn[3]: r2n6{c9 c4} - r2n1{c4 c5} - r5n1{c5 c9} ==> r5c9 ≠ 6
singles and whip[1] to the end

But I understand your resolution which follows the principle of "simplest first".
DEFISE
 
Posts: 286
Joined: 16 April 2020
Location: France

Re: Gold Leader, Standing By

Postby denis_berthier » Wed Nov 18, 2020 2:48 pm

DEFISE wrote:Hi Denis,
Amazing, because we could also do directly:
whip[1]: c2n4{r9 .} ==> r9c1 ≠ 4, r8c1 ≠ 4
whip[1]: c2n5{r6 .} ==> r6c1 ≠ 5
hidden-pairs-in-a-column: c1{n4 n5}{r1 r3} ==> r3c1 ≠ 9, r3c1 ≠ 2, r1c1 ≠ 9, r1c1 ≠ 8
biv-chain-rn[3]: r2n6{c9 c4} - r2n1{c4 c5} - r5n1{c5 c9} ==> r5c9 ≠ 6
singles and whip[1] to the end

But I understand your resolution which follows the principle of "simplest first".


As mith puzzles are designed to have many Subsets, I activated Subsets.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gold Leader, Standing By

Postby mith » Wed Nov 18, 2020 3:44 pm

There are actually even more subsets/fish if you prefer all of them first (as Hodoku does, for example). ;) (There's also a thematic Y-Wing, though it's not available immediately, unlike the many possible eliminations on 6.)
Last edited by mith on Wed Nov 18, 2020 3:56 pm, edited 1 time in total.
mith
 
Posts: 996
Joined: 14 July 2020

Re: Gold Leader, Standing By

Postby denis_berthier » Wed Nov 18, 2020 3:55 pm

mith wrote:There are actually even more subsets/fish if you prefer all of them first (as Hodoku does, for example). ;)

Probably there are more Subsets, but they are destroyed by other eliminations before being used (SudoRules doesn't mention a Subset if it allows no new elimination).
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gold Leader, Standing By

Postby mith » Wed Nov 18, 2020 3:57 pm

Yes, what I mean is if you find hidden quads and jellyfish before biv-chains, they are present (and given new eliminations). Hodoku finds a jellyfish, 5 swordfish, 2 x-wings, a hidden quad, and a naked quad... before finally trying a W-Wing to finish off the puzzle.
mith
 
Posts: 996
Joined: 14 July 2020

Re: Gold Leader, Standing By

Postby denis_berthier » Wed Nov 18, 2020 4:04 pm

mith wrote:Yes, what I mean is if you find hidden quads and jellyfish before biv-chains, they are present (and given new eliminations). Hodoku finds a jellyfish, 5 swordfish, 2 x-wings, a hidden quad, and a naked quad... before finally trying a W-Wing to finish off the puzzle.

For any puzzle, there are generally many resolution paths.
Rules are ordered differently in SudoRules and in Hodoku. For SudoRules, any pattern of length 3 will come before patterns of size 4 (Jellyfish, Quads, ...). Here the bivalue-chain[3] eliminates the possibility of any subsequent Subsets, as Singles are enough to finish the puzzle.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gold Leader, Standing By

Postby mith » Wed Nov 18, 2020 4:08 pm

I understand that. :) I'm certainly not saying the ordering in SudoRules is wrong!
mith
 
Posts: 996
Joined: 14 July 2020


Return to Puzzles