Get a solution within few steps?

Post puzzles for others to solve here.

Get a solution within few steps?

Postby yzfwsf » Fri Sep 24, 2021 3:53 am

Code: Select all
 *-----------*
 |..2|.8.|..6|
 |...|4..|.2.|
 |...|..2|3..|
 |---+---+---|
 |82.|57.|1..|
 |...|..8|..2|
 |6.1|..3|.5.|
 |---+---+---|
 |.5.|8..|..7|
 |..9|..1|...|
 |3..|7.5|...|
 *-----------*
..2.8...6...4...2......23..82.57.1.......8..26.1..3.5..5.8....7..9..1...3..7.5...

skfr:8.5
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Get a solution within few steps?

Postby denis_berthier » Sat Sep 25, 2021 7:20 am

.
SER = 8.5, but on the hard side of the 8.5s.

Code: Select all
Resolution state after Singles (and whips[1]):
   +----------------------+----------------------+----------------------+
   ! 14579  13479  2      ! 139    8      79     ! 4579   1479   6      !
   ! 1579   136789 35678  ! 4      13569  679    ! 5789   2      1589   !
   ! 14579  146789 45678  ! 169    1569   2      ! 3      14789  14589  !
   +----------------------+----------------------+----------------------+
   ! 8      2      34     ! 5      7      469    ! 1      3469   349    !
   ! 4579   3479   3457   ! 169    1469   8      ! 4679   34679  2      !
   ! 6      479    1      ! 29     249    3      ! 4789   5      489    !
   +----------------------+----------------------+----------------------+
   ! 124    5      46     ! 8      23469  469    ! 2469   13469  7      !
   ! 247    4678   9      ! 236    2346   1      ! 24568  3468   3458   !
   ! 3      1468   468    ! 7      2469   5      ! 24689  14689  1489   !
   +----------------------+----------------------+----------------------+
216 candidates


Having 216 candidates at this point is kind of a record for a 8.5. Was it your purpose to have so many candidates at the start?

I publish the full SudoRules simplest-first resolution path, because:
- the associated rating (W6) is a reference for the length of chains used in any fewer steps solution;
- it seems to be close to a record also in the small number of Singles (21) after the last non-W1 pattern (but this may depend on the resolution path);
- it also seems to be close to a record for the number of non-W1 steps (50).
Hidden Text: Show
biv-chain[3]: r7c3{n6 n4} - c6n4{r7 r4} - r4n6{c6 c8} ==> r7c8≠6
biv-chain[4]: r7c3{n6 n4} - r4c3{n4 n3} - c9n3{r4 r8} - r7n3{c8 c5} ==> r7c5≠6
biv-chain[4]: r7n3{c5 c8} - c9n3{r8 r4} - r4c3{n3 n4} - c6n4{r4 r7} ==> r7c5≠4
z-chain[4]: r5n1{c5 c4} - b5n6{r5c4 r4c6} - c6n4{r4 r7} - b8n9{r7c6 .} ==> r5c5≠9
whip[4]: r7n1{c1 c8} - r7n3{c8 c5} - c4n3{r8 r1} - r1n1{c4 .} ==> r2c1≠1
whip[4]: r7n1{c1 c8} - r7n3{c8 c5} - c4n3{r8 r1} - r1n1{c4 .} ==> r3c1≠1
biv-chain[5]: r4c3{n4 n3} - c9n3{r4 r8} - b9n5{r8c9 r8c7} - r1n5{c7 c1} - b4n5{r5c1 r5c3} ==> r5c3≠4
biv-chain[5]: r1n5{c7 c1} - c1n1{r1 r7} - c1n2{r7 r8} - b7n7{r8c1 r8c2} - r6n7{c2 c7} ==> r1c7≠7
whip[5]: r7n3{c8 c5} - b8n9{r7c5 r9c5} - r9n2{c5 c7} - r7n2{c7 c1} - r7n1{c1 .} ==> r7c8≠9
t-whip[5]: r7c3{n6 n4} - r4c3{n4 n3} - r5n3{c3 c8} - r7c8{n3 n1} - b7n1{r7c1 .} ==> r9c2≠6
biv-chain[6]: c6n4{r7 r4} - r4c3{n4 n3} - c9n3{r4 r8} - b9n5{r8c9 r8c7} - r1n5{c7 c1} - c1n1{r1 r7} ==> r7c1≠4
t-whip[6]: r4c3{n4 n3} - c9n3{r4 r8} - r8n5{c9 c7} - r1n5{c7 c1} - c1n1{r1 r7} - r7c8{n1 .} ==> r4c8≠4, r7c3≠4
naked-single ==> r7c3=6
z-chain[4]: c6n4{r7 r4} - r4n6{c6 c8} - r9n6{c8 c7} - r9n2{c7 .} ==> r9c5≠4
whip[5]: r9c3{n4 n8} - r9c2{n8 n1} - r9c9{n1 n9} - r7c7{n9 n2} - r7c1{n2 .} ==> r9c7≠4
whip[5]: r9c3{n4 n8} - r9c2{n8 n1} - r9c9{n1 n9} - r7c7{n9 n2} - r7c1{n2 .} ==> r9c8≠4
z-chain[6]: r4n9{c9 c6} - c6n4{r4 r7} - r7c7{n4 n2} - c1n2{r7 r8} - r8n7{c1 c2} - r6n7{c2 .} ==> r6c7≠9
t-whip[6]: c9n3{r4 r8} - r8n5{c9 c7} - r1n5{c7 c1} - c1n1{r1 r7} - r7c8{n1 n4} - c6n4{r7 .} ==> r4c9≠4
z-chain[5]: r9n2{c7 c5} - r9n6{c5 c8} - r4n6{c8 c6} - r4n4{c6 c3} - r9c3{n4 .} ==> r9c7≠8
t-whip[5]: b1n6{r3c2 r2c2} - c6n6{r2 r4} - r4n4{c6 c3} - r9c3{n4 n8} - b1n8{r2c3 .} ==> r3c2≠9, r3c2≠7, r3c2≠4, r3c2≠1
whip[5]: r9c3{n8 n4} - r9c2{n4 n1} - r9c9{n1 n9} - r4c9{n9 n3} - r4c3{n3 .} ==> r9c8≠8
z-chain[4]: c8n8{r8 r3} - r3c2{n8 n6} - c4n6{r3 r5} - c7n6{r5 .} ==> r8c8≠6
whip[6]: r3n7{c3 c8} - c8n8{r3 r8} - r8c2{n8 n4} - r9c3{n4 n8} - b1n8{r2c3 r3c2} - c2n6{r3 .} ==> r2c2≠7
whip[6]: r9c3{n8 n4} - r4n4{c3 c6} - b8n4{r7c6 r8c5} - r8c8{n4 n3} - b6n3{r4c8 r4c9} - r4c3{n3 .} ==> r8c2≠8
whip[1]: r8n8{c9 .} ==> r9c9≠8
t-whip[4]: r6n8{c9 c7} - r6n7{c7 c2} - r8c2{n7 n4} - r9n4{c2 .} ==> r6c9≠4
z-chain[3]: b6n4{r5c8 r6c7} - r6n7{c7 c2} - r8c2{n7 .} ==> r5c2≠4
t-whip[4]: b6n4{r5c8 r6c7} - r6n7{c7 c2} - r8c2{n7 n4} - c5n4{r8 .} ==> r5c1≠4
z-chain[3]: c1n4{r3 r8} - b8n4{r8c5 r7c6} - r4n4{c6 .} ==> r3c3≠4
t-whip[4]: c6n4{r7 r4} - r4c3{n4 n3} - r5n3{c3 c8} - r5n4{c8 .} ==> r7c7≠4
t-whip[3]: r7c7{n2 n9} - r9n9{c9 c5} - r9n2{c5 .} ==> r8c7≠2
t-whip[3]: r9n2{c5 c7} - r7c7{n2 n9} - b8n9{r7c5 .} ==> r9c5≠6
whip[1]: r9n6{c8 .} ==> r8c7≠6
z-chain[4]: r9c5{n9 n2} - r6c5{n2 n4} - b8n4{r8c5 r7c6} - b8n9{r7c6 .} ==> r3c5≠9
z-chain[4]: r9c5{n9 n2} - r6c5{n2 n4} - b8n4{r8c5 r7c6} - b8n9{r7c6 .} ==> r2c5≠9
biv-chain[5]: r6n7{c7 c2} - b7n7{r8c2 r8c1} - b7n2{r8c1 r7c1} - c7n2{r7 r9} - c7n6{r9 r5} ==> r5c7≠7
whip[6]: r4c3{n4 n3} - c9n3{r4 r8} - r8n5{c9 c7} - r1n5{c7 c1} - c1n4{r1 r3} - c9n4{r3 .} ==> r9c3≠4
singles ==> r9c3=8, r4c3=4, r7c6=4, r6c5≠9, r5c8≠3
hidden-pairs-in-a-block: b1{n6 n8}{r2c2 r3c2} ==> r2c2≠9, r2c2≠3, r2c2≠1
whip[1]: b1n1{r1c2 .} ==> r1c4≠1, r1c8≠1
biv-chain[3]: r3c3{n7 n5} - c5n5{r3 r2} - r2n3{c5 c3} ==> r2c3≠7
biv-chain[4]: r7n3{c5 c8} - r7n1{c8 c1} - r1n1{c1 c2} - b1n3{r1c2 r2c3} ==> r2c5≠3
singles ==> r1c4=3, r2c3=3, r5c2=3
biv-chain[3]: r8c4{n6 n2} - r9n2{c5 c7} - c7n6{r9 r5} ==> r5c4≠6
biv-chain[4]: r7c8{n3 n1} - c1n1{r7 r1} - r1n5{c1 c7} - b9n5{r8c7 r8c9} ==> r8c9≠3
hidden-single-in-a-column ==> r4c9=3
t-whip[2]: r4n9{c8 c6} - c4n9{r6 .} ==> r3c8≠9
biv-chain[4]: r2c2{n8 n6} - c6n6{r2 r4} - r4c8{n6 n9} - r6c9{n9 n8} ==> r2c9≠8
biv-chain[4]: r3c2{n6 n8} - c8n8{r3 r8} - r8n3{c8 c5} - b8n6{r8c5 r8c4} ==> r3c4≠6
singles ==> r8c4=6, r6c4=2, r6c5=4
t-whip[4]: r6c9{n8 n9} - c2n9{r6 r1} - b3n9{r1c8 r2c7} - c7n7{r2 .} ==> r6c7≠8
singles ==> r6c7=7, r6c2=9, r6c9=8
biv-chain[3]: b3n7{r3c8 r1c8} - r1c6{n7 n9} - r3c4{n9 n1} ==> r3c8≠1
whip[1]: c8n1{r9 .} ==> r9c9≠1
biv-chain[3]: r9n1{c8 c2} - r7c1{n1 n2} - r7c7{n2 n9} ==> r9c8≠9
biv-chain[4]: r1n5{c7 c1} - r3c3{n5 n7} - r2n7{c1 c6} - r1c6{n7 n9} ==> r1c7≠9
biv-chain[4]: b2n7{r2c6 r1c6} - c8n7{r1 r3} - r3n8{c8 c2} - r3n6{c2 c5} ==> r2c6≠6
singles ==> r4c6=6, r4c8=9, r5c5=1, r5c4=9, r3c4=1, r2c9=1
biv-chain[3]: c7n8{r8 r2} - b3n9{r2c7 r3c9} - c9n5{r3 r8} ==> r8c7≠5
hidden-single-in-a-block ==> r8c9=5
biv-chain[3]: b3n9{r2c7 r3c9} - c9n4{r3 r9} - r8c7{n4 n8} ==> r2c7≠8
singles ==> r3c8=8, r3c2=6, r2c2=8, r3c5=5, r2c5=6, r3c3=7, r5c3=5, r5c1=7, r8c2=7, r2c6=7, r1c6=9, r1c8=7, r8c7=8
finned-x-wing-in-columns: n4{c2 c9}{r9 r1} ==> r1c7≠4
21 Singles to the end



Now a lazy few (4) steps solution:
Hidden Text: Show
FORCING[3]-T&E(W1) applied to trivalue candidates n2r7c1, n2r7c5 and n2r7c7 :
===> 3 values decided in the three cases: n8r6c9 n2r6c4 n7r8c2
===> 32 candidates eliminated in the three cases: n7r1c2 n7r1c7 n7r2c2 n8r2c9 n7r3c2 n8r3c9 n7r5c2 n7r5c7 n7r5c8 n7r6c2 n9r6c4 n2r6c5 n4r6c7 n8r6c7 n9r6c7 n4r6c9 n9r6c9 n4r7c7 n6r7c7 n9r7c8 n7r8c1 n4r8c2 n6r8c2 n8r8c2 n2r8c4 n2r8c7 n8r8c9 n4r9c5 n6r9c5 n8r9c7 n8r9c8 n8r9c9

naked-single ==> r6c7=7

FORCING[3]-T&E(W1) applied to trivalue candidates n3r4c3, n3r4c8 and n3r4c9 :
===> 3 values decided in the three cases: n6r8c4 n3r1c4 n6r7c3
===> 37 candidates eliminated in the three cases: n3r1c2 n9r1c2 n1r1c4 n9r1c4 n9r2c2 n5r2c3 n6r2c3 n8r2c3 n3r2c5 n9r2c5 n9r3c2 n4r3c3 n6r3c3 n6r3c4 n9r3c5 n4r4c8 n4r4c9 n4r5c1 n9r5c1 n4r5c2 n3r5c3 n4r5c3 n6r5c4 n4r5c5 n9r5c5 n4r7c1 n4r7c3 n4r7c5 n6r7c5 n6r7c6 n6r7c8 n3r8c4 n6r8c5 n6r8c7 n6r8c8 n6r9c2 n6r9c3

FORCING[3]-T&E(W1) applied to trivalue candidates n4r1c1, n4r3c1 and n4r8c1 :
===> 8 values decided in the three cases: n3r4c9 n4r4c3 n8r9c3 n9r6c2 n4r6c5 n3r5c2 n3r2c3 n4r7c6
===> 32 candidates eliminated in the three cases: n5r1c1 n9r1c7 n1r1c8 n4r1c8 n1r2c1 n1r2c2 n3r2c2 n7r2c3 n5r2c7 n1r3c1 n1r3c2 n4r3c2 n8r3c3 n4r3c8 n1r3c9 n5r3c9 n3r4c3 n4r4c6 n3r4c8 n9r4c9 n9r5c2 n3r5c8 n4r6c2 n9r6c5 n9r7c6 n4r7c8 n4r8c5 n3r8c9 n8r9c2 n4r9c3 n4r9c7 n4r9c8

hidden-single-in-a-row ==> r1c7=5
hidden-single-in-a-block ==> r3c9=4
naked-single ==> r8c9=5
hidden-single-in-a-row ==> r9c2=4
naked-single ==> r1c2=1
naked-single ==> r8c1=2
naked-single ==> r7c1=1
naked-single ==> r7c8=3
naked-single ==> r8c5=3
hidden-single-in-a-block ==> r1c1=4

FORCING[3]-T&E(W1) applied to trivalue candidates n9r5c4, n9r5c7 and n9r5c8 :
===> 11 values decided in the three cases: n7r1c8 n2r9c5 n6r9c7 n9r7c5 n2r7c7 n5r3c5 n7r3c3 n5r5c3 n7r5c1 n5r2c1 n7r2c6
===> 23 candidates eliminated in the three cases: n7r1c6 n9r1c8 n7r2c1 n9r2c1 n5r2c5 n6r2c6 n9r2c6 n5r3c1 n7r3c1 n5r3c3 n1r3c5 n6r3c5 n7r3c8 n9r3c8 n5r5c1 n7r5c3 n6r5c7 n2r7c5 n9r7c7 n9r9c5 n2r9c7 n9r9c7 n6r9c8

stte


François, I think this is a good example for your fewer-steps algorithm. Mine is too slow for making enough tries.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Get a solution within few steps?

Postby DEFISE » Sat Sep 25, 2021 10:36 am

Hi Denis,
I did not find anything of interest in W10 nor in gW10:
It’s slow (more than 60s per try).
With 5 tries I obtained at least 13 steps !

Here is a 3 steps solution with T&E:

Elimination of 1r7c8 by T&E(singles)
Singles: 1r7c1, 2r8c1, 7r8c2, 7r6c7, 8r6c9, 2r6c4
Block/line: 8r8b9 => -8r9c7 -8r9c8
Elimination of 9r4c6 by T&E(singles)
Block/line: 9r4b6 => -9r5c7 -9r5c8
Elimination of 9r4c9 by T&E(singles)
=> solution in W1

N.B : there are solutions with only two T&E(S2).
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Get a solution within few steps?

Postby denis_berthier » Sat Sep 25, 2021 11:27 am

.
I've started to run 1 try. What I get in W8 is quite noteworthy:
Hidden Text: Show
=====> STEP #1
===> 13 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #2
===> 13 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #3
===> 13 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #4
===> 12 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #5
best score found = 1

=====> STEP #6
===> 10 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #7
===> 10 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #9
===> 9 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #10
===> 8 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #11
===> 7 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #12
===> 7 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #13
===> 7 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #14
===> 6 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #15
===> 7 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #16
===> 6 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #17
===> 5 candidates can be eliminated with the current set of rules:
best score found = 1

=====> STEP #18
===> 15 candidates can be eliminated with the current set of rules:
best score found = 6

....


17 steps with a large number of candidates that could be eliminated each time, but all with the same score 1. This implies an astronomical number of possible paths. I may have been very unlucky in the random choices made at each step, but I think there's something more than bad luck.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Get a solution within few steps?

Postby DEFISE » Sat Sep 25, 2021 4:28 pm

denis_berthier wrote:.
... I may have been very unlucky in the random choices made at each step, but I think there's something more than bad luck.

I think you used as rules only Singles and whip [<= 8]
(since whip [1] = Block/Line and you consider subsets as steps)
With this rules I did 20 tries without using my criterion 2 (like you) and 20 tries using my criterion 2.
Reminder:
criterion 2 is the number of candidates of the smallest CSP variable containing a candidate.
I use this criterion to decide between candidates who all have a score equal to 1.
Here are the results :

1) Number of steps required to obtain a target with a score > 1
a) without criterion 2
14, 16, 13, 15, 16, 22, 9, 12, 10, 12, 11, 13, 12, 12, 9, 21, 11, 20, 14, 14
=> average = 13,8
With 18 you could say you were unlucky.
b) with criterion 2
15, 9, 6, 11, 10, 9, 13, 12, 11, 7, 8, 10, 14, 8, 9, 14, 12, 12, 13, 11
=> average = 10,7

2) Total number of steps
a) without criterion 2
42, 36, 26, 26, 27, 41, 32, 36, 26, 27, 25, 26, 33, 27, 21, 38, 25, 32, 27, 29
=> average = 30,1
b) with criterion 2
28, 22, 23, 26, 28, 24, 25, 22, 22, 21, 26, 23, 29, 17, 23, 27, 26, 28, 22, 23
=> average = 24,3

Conclusion: it seems that criterion 2 is interesting for this puzzle, which does not mean that it is for others, of course.
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Get a solution within few steps?

Postby DEFISE » Sat Sep 25, 2021 4:52 pm

But the most striking fact is that the total number of steps is considerably reduced, if we take as rules
(whips [<= 8] + Singles + subsets) and then consider whips and subsets as step.
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Get a solution within few steps?

Postby denis_berthier » Sat Sep 25, 2021 6:33 pm

The results about criterion 2 are interesting. It'd be worth to test more puzzles.

DEFISE wrote:I think you used as rules only Singles and whip [<= 8]

No, I used Subsets + whips[≤8]. But there are very few Subsets in this puzzle.

DEFISE wrote:But the most striking fact is that the total number of steps is considerably reduced, if we take as rules
(whips [<= 8] + Singles + subsets) and then consider whips and subsets as step.

I don't understand what you mean.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Get a solution within few steps?

Postby DEFISE » Sun Sep 26, 2021 8:04 am

denis_berthier wrote:No, I used Subsets + whips[≤8]. But there are very few Subsets in this puzzle.


I meant that to calculate a whip's target score you only use singles and whips [1].
But as I did the same thing with my algo, this caused the complete inhibition of the subsets, which is not very realistic I admit.

denis_berthier wrote:I don't understand what you mean.

Sorry, I meant the most striking fact is that the total number of steps is not considerably reduced, if I add the subsets.
Indeed, by executing after each whip (singles + whips [1] + subsets) and with the 2 criteria,
I got with 20 tries:
Average of total number of steps (whips + subsets) => 24,1
Average of number of steps required to obtain a candidate with a score > 1 => 10,1
N.B : There is only one subset per resolution but still eliminates a lot of candidates.
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Get a solution within few steps?

Postby denis_berthier » Sun Sep 26, 2021 8:11 am

DEFISE wrote: I meant the most striking fact is that the total number of steps is not considerably reduced, if I add the subsets.

I see. I'm not very surprised, because this puzzle has very few Subsets.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Get a solution within few steps?

Postby totuan » Mon Sep 27, 2021 3:27 pm

Just for reference - My very long path for this one, I try to avoid on using more complex diagram. Hope, there is not many typos :D

Hidden Text: Show
Code: Select all
 *-----------------------------------------------------------------------------*
 | 14579   13479   2       | 139     8       79      | 4579    1479    6       |
 | 579-1   136789  35678   | 4       13569   679     | 5789    2       1589    |
 | 4579-1  146789  45678   | 169     1569    2       | 3       14789   14589   |
 |-------------------------+-------------------------+-------------------------|
 | 8       2       34      | 5       7       469     | 1       3469    349     |
 | 4579    3479    3457    | 169     1469    8       | 4679    34679   2       |
 | 6       479     1       | 29      249     3       | 4789    5       489     |
 |-------------------------+-------------------------+-------------------------|
 | 124     5       46      | 8       23469   469     | 2469    134-69  7       |
 | 247     4678    9       | 236     2346    1       | 24568   3468    3458    |
 | 3       1468    468     | 7       2469    5       | 24689   14689   1489    |
 *-----------------------------------------------------------------------------*

01: [Finned X-wing 1’s: r1c12=r1c8-r7c8=r7c1]=(1-3)r1c4=r2c5-r7c5=(3-1)r7c8=r7c1 => r23c1<>1
02: (469=2)r7c367-r9c7=(2-9)r9c5=r7c56 => r7c8<>9
03: (6=4)r7c3-r7c6=(4-6)r4c6=r4c8 => r7c8<>6
Code: Select all
 *-----------------------------------------------------------------------------*
 |#14579   13479   2       | 139     8       79      |#4579    1479    6       |
 | 579     136789  35678   | 4       13569   679     | 5789    2       1589    |
 | 4579    146789  45678   | 169     1569    2       | 3       14789   14589   |
 |-------------------------+-------------------------+-------------------------|
 | 8       2      #34      | 5       7      #469     | 1       3469   #349     |
 | 4579    3479    3457    | 169     1469    8       | 4679    34679   2       |
 | 6       479     1       | 29      249     3       | 4789    5       489     |
 |-------------------------+-------------------------+-------------------------|
 |#12-4    5       6-4     | 8       239-46  #49-6   | 29-46  #14*3    7       |
 | 247     4678    9       | 236     2346    1       |#24568   3468   #3458    |
 | 3       1468    468     | 7       2469    5       | 24689   14689   1489    |
 *-----------------------------------------------------------------------------*

Look at r7c8: if removing 3’s =>
A pattern: (4=1)r7c8-r7c1=(1-5)r1c1=r1c7-r8c7=(5-3)r8c9=r4c9-(3=4)r4c3-r4c6=r7c6 =>loop
04: (4)r7c6=r4c6-(4=3)r4c3-r4c9=r8c9-(3)r7c8=[ A pattern ] => r7c1357<>4, r7c3=6
Code: Select all
 *-----------------------------------------------------------------------------*
 | 14579   13479   2       | 139     8       79      | 4579    1479    6       |
 | 579     136789  3578    | 4       13569   679     | 5789    2       1589    |
 | 4579    146789  4578    | 169     1569    2       | 3       14789   14589   |
 |-------------------------+-------------------------+-------------------------|
 | 8       2       34      | 5       7       469     | 1       3469    349     |
 | 4579    3479    3457    | 169     1469    8       | 4679    34679   2       |
 | 6       479     1       | 29      249     3       | 4789    5       489     |
 |-------------------------+-------------------------+-------------------------|
 | 12      5       6       | 8       239     49      | 29      134     7       |
 | 247     478     9       | 236     2346    1       | 458-26  348-6   3458    |
 | 3       148     48      | 7       29-46   5       | 26948  16948    1489    |
 *-----------------------------------------------------------------------------*

05: (2=9)r7c7-r7c56=(9-2)r9c5=r9c7 => r9c5<>46, r8c7<>2 => r8c78<>6
Code: Select all
 *-----------------------------------------------------------------------------*
 | 14579   13479   2       |#139     8       79      | 4579    1479    6       |
 | 579     136789  3578    | 4       1569-3  679     | 5789    2       1589    |
 | 4579    146789  4578    | 169     1569    2       | 3       14789   14589   |
 |-------------------------+-------------------------+-------------------------|
 | 8       2      #34      | 5       7       469     | 1       3469   #349     |
 | 4579   #3479   *3457    | 19-6    1469    8       | 4679    34679   2       |
 | 6       479     1       | 29      249     3       | 4789    5       489     |
 |-------------------------+-------------------------+-------------------------|
 | 12      5       6       | 8       239     49      | 29      134     7       |
 | 247     478     9       |#26-3    2346    1       | 458     348    #3458    |
 | 3       148     48      | 7       29      5       | 24689   14689   1489    |
 *-----------------------------------------------------------------------------*

06: (3)r7c5=(3-1)r7c8=(1-2)r7c1=(2-7)r8c1=r8c2-r56c2=(57)r5c13-(3)r5c3=(3)[r1c4=r8c4-r8c9=r4c9-r4c3=r5c2]-(3)r1c2=r1c4 => r8c4, r2c5<>3, r1c4=3
07: (6)r5c7=(6-2)r9c7=r9c5-(2=6)r8c4 => r5c4<>6
Code: Select all
 *-----------------------------------------------------------------------------*
 | 14579   1479    2       | 3       8       79      | 4579    1479    6       |
 | 579     368-179 3578    | 4       1569    679     | 5789    2       1589    |
 | 4579    68-1479 578-4   | 169     1569    2       | 3       14789   14589   |
 |-------------------------+-------------------------+-------------------------|
 | 8       2       34      | 5       7       469     | 1       3469    349     |
 | 4579    3479    57-34   | 19      1469    8       | 4679    34679   2       |
 | 6       479     1       | 29      249     3       | 4789    5       489     |
 |-------------------------+-------------------------+-------------------------|
 | 12      5       6       | 8       239     49      | 29      134     7       |
 | 247     478     9       | 26      2346    1       | 458     348     3458    |
 | 3       148     48      | 7       29      5       | 24689   14689   1489    |
 *-----------------------------------------------------------------------------*

08: (68)r23c2=(8)r89c2-(8=4)r9c3-(4=3)r4c3-r2c3=(36)r23c2 => loop: r2c2<>179, r3c2<>1479, r3c3<>4, r5c3<>34 => r1c8<>1
Code: Select all
 *-----------------------------------------------------------------------------*
 | 14579   1479    2       | 3       8       79      | 4579    479     6       |
 | 579     368     3578    | 4       1569    679     | 5789    2       1589    |
 | 4579    68      578     | 169     1569    2       | 3       14789   14589   |
 |-------------------------+-------------------------+-------------------------|
 | 8       2       34      | 5       7       469     | 1       3469    349     |
 | 4579    3479    57      | 19      1469    8       | 4679    34679   2       |
 | 6       479     1       | 29      249     3       | 4789    5       489     |
 |-------------------------+-------------------------+-------------------------|
 | 12      5       6       | 8       239     4-9     | 29      134     7       |
 | 247     478     9       | 26      2346    1       | 458     348     3458    |
 | 3       148     48      | 7       29      5       | 24689   14689   1489    |
 *-----------------------------------------------------------------------------*

09: Present as diagram: r7c6<>9, r7c6=4
Code: Select all
(7)r1c8-(7=9)r1c6*
 ||
 ||             AUR(15)r23c9
 ||              ||
(7-1)r3c8=r79c8-(1)r9c9
 ||              ||
 ||             (1-6)r5c5=(6-4)r4c6=r7c6*
 ||              ||
 ||             (5-3)r8c9=r4c9-(3=4)r4c3-r4c6=r7c6*
 ||
(7)r5c8-r6c7=r6c2-r8c2=(7-2)r8c1=r7c1-(2=9)r7c7*

Code: Select all
 *-----------------------------------------------------------------------------*
 | 14579   1479    2       | 3       8       79      | 4579    479     6       |
 | 579     368     3578    | 4       156     679     | 5789    2       1589    |
 | 4579    68      578     | 169     156     2       | 3       14789   14589   |
 |-------------------------+-------------------------+-------------------------|
 | 8       2       34      | 5       7       69      | 1       3469    349     |
 | 4579    3479    57      | 19      146     8       | 4679    34679   2       |
 | 6       479     1       | 29      24      3       | 4789    5       489     |
 |-------------------------+-------------------------+-------------------------|
 | 12      5       6       | 8       239     4       | 29      13      7       |
 | 247     478     9       | 26      2346    1       | 458     348     458-3   |
 | 3       148     48      | 7       29      5       | 24689   14689   1489    |
 *-----------------------------------------------------------------------------*

10: (3=1)r7c8-r7c1=(1-5)r1c1=r1c7-r8c7=r8c9 => r8c9<>3, some singles
Code: Select all
 *--------------------------------------------------------------------*
 | 14579  1479   2      | 3      8      79     | 4579   479    6      |
 | 579    68     3      | 4      156    679    | 5789   2      1589   |
 | 4579   68     57     | 19-6   156    2      | 3      14789  14589  |
 |----------------------+----------------------+----------------------|
 | 8      2      4      | 5      7      69     | 1      69     3      |
 | 579    3      57     | 19     146    8      | 4679   4679   2      |
 | 6      79     1      | 29     24     3      | 4789   5      489    |
 |----------------------+----------------------+----------------------|
 | 12     5      6      | 8      239    4      | 29     13     7      |
 | 247    47     9      | 26     236    1      | 458    348    458    |
 | 3      14     8      | 7      29     5      | 2469   1469   149    |
 *--------------------------------------------------------------------*

11: (6=8)r3c2-r3c8=(8-3)r8c8=(3-6)r8c5=r8c4 => r3c4<>6, some singles
Code: Select all
 *--------------------------------------------------------------------*
 | 4579-1 1479   2      | 3      8      79     | 4579   479    6      |
 | 579    68     3      | 4      156    679    | 5789   2      1589   |
 | 4579   68     57     | 19     156    2      | 3      14789  14589  |
 |----------------------+----------------------+----------------------|
 | 8      2      4      | 5      7      69     | 1      69     3      |
 | 579    3      57     | 19     16     8      | 4679   4679   2      |
 | 6      79     1      | 2      4      3      | 789    5      89     |
 |----------------------+----------------------+----------------------|
 | 12     5      6      | 8      239    4      | 29     13     7      |
 | 247    47     9      | 6      23     1      | 458    348    458    |
 | 3      14     8      | 7      29     5      | 269-4  169-4  149    |
 *--------------------------------------------------------------------*

12: (4=1)r9c2-(1=2)r7c1-r7c7=(2-6)r9c7=r9c8 => r9c78<>4
13: Present as diagram: r1c1<>1, some singles
Code: Select all
(4-5)r1c7=r1c1*
 ||
(4-6)r5c7=(6-2)r9c7=r7c7-(2=1)r7c1*
 ||
(4)r8c7-r9c9=(4-1)r9c2=r7c1*

Code: Select all
 *--------------------------------------------------------------------*
 | 4579   1      2      | 3      8      79     | 459    479    6      |
 | 579    68     3      | 4      156    79-6   | 589    2      159    |
 | 4579   68     57     | 19     156    2      | 3      14789  1459   |
 |----------------------+----------------------+----------------------|
 | 8      2      4      | 5      7      69     | 1      69     3      |
 | 57     3      57     | 19     1-6    8      | 469    469    2      |
 | 6      9      1      | 2      4      3      | 7      5      8      |
 |----------------------+----------------------+----------------------|
 | 1      5      6      | 8      29     4      | 29     3      7      |
 | 2      7      9      | 6      3      1      | 458    48     45     |
 | 3      4      8      | 7      29     5      | 269    169    19     |
 *--------------------------------------------------------------------*

14: (6)r3c5=(6-8)r3c2=(8-7)r3c8=r1c8-(79=6)r14c6 => r5c5, r2c6<>6, stte

Thanks for the puzzle!
totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: Get a solution within few steps?

Postby DEFISE » Tue Sep 28, 2021 6:56 pm

Hi Denis,
it’s much better starting as totuan:

1) whip[4]: r7n1{c1 c8}- r1n1{c8 c4}- c4n3{r1 r8}- r7n3{c5 .} => -1r2c1 -1r3c1
2) whip[5]: r7n3{c8 c5}- b8n9{r7c5 r9c5}- r9n2{c5 c7}- r7n2{c7 c1}- r7n1{c1 .} => -9r7c8
3) whip[3]: r7c3{n6 n4}- c6n4{r7 r4}- r4n6{c6 .} => -6r7c8

From there, 15 executions of my solver “Few Steps” in W8 gave 7 times 10 steps and 8 times 11 steps (with criterion 2 activated).
Here is an example of a 10 steps path:

4) whip[6]: r4c3{n4 n3}- c9n3{r4 r8}- r7c8{n3 n1}- c1n1{r7 r1}- r1n5{c1 c7}- c9n5{r2 .} => -4r7c3
Single: 6r7c3
5) whip[7]: r9c3{n8 n4}- r4c3{n4 n3}- c9n3{r4 r8}- r8n5{c9 c7}- r1n5{c7 c1}- c1n1{r1 r7} - r9c2{n1 .} => -8r8c2
Block/Line: 8r8b9 => -8r9c7 -8r9c8 -8r9c9
6) whip[7]: c2n6{r2 r3}- c2n8{r3 r9}- r9c3{n8 n4}- r4c3{n4 n3}- r2n3{c3 c5}- r7n3{c5 c8}- b6n3{r4c8 .} => -1r2c2
7) whip[7]: c2n6{r3 r2}- c2n8{r2 r9}- r9c3{n8 n4}- r4c3{n4 n3}- r2n3{c3 c5}- r7n3{c5 c8}- b6n3{r4c8 .} => -1r3c2
Block/Line: 1b1r1 => -1r1c4 -1r1c8
8) whip[4]: r1n3{c4 c2}- r1n1{c2 c1}- r7n1{c1 c8}- r7n3{c8 .} => -3r2c5
Single: 3r1c4
9) whip[8]: r7n1{c8 c1}- c1n2{r7 r8}- r8c4{n2 n6}- r3c4{n6 n9}- r1c6{n9 n7}- c8n7{r1 r5}- b4n7{r5c1 r6c2}- r8n7{c2 .} => -1r3c8
Block/Line: 1c8b9 => -1r9c9
10) whip[7]: r8n5{c9 c7}- r1n5{c7 c1}- c1n1{r1 r7}- r7c8{n1 n4}- r9c9{n4 n9}- r4c9{n9 n4}- c6n4{r4 .} => -3r8c9
Singles: 3r4c9, 4r4c3, 8r9c3, 4r7c6
Block/Line: 9b8c5 => -9r2c5 -9r3c5 -9r5c5 -9r6c5
Hidden pairs: 68c2r23 => -3r2c2 -7r2c2 -9r2c2 -4r3c2 -7r3c2 -9r3c2
Singles: 3r2c3, 3r5c2
11) whip[8]: c4n2{r6 r8}- c1n2{r8 r7}- r7n1{c1 c8}- c8n3{r7 r8}- c8n8{r8 r3}- r3c2{n8 n6}- c4n6{r3 r5}- r4c6{n6 .} => -9r6c4
Singles: 2r6c4, 4r6c5, 6r8c4
12) whip[8]: r7n9{c5 c7}- r9c9{n9 n4}- r9c2{n4 n1}- r9c8{n1 n6}- b6n6{r4c8 r5c7}- c7n4{r5 r1}- r1n5{c7 c1}- r1n1{c1 .} => -3r7c5
Singles: 3r7c8, 1r7c1, 4r9c2, 7r8c2, 9r6c2, 1r1c2, 8r6c9, 7r6c7, 2r8c1, 3r8c5, 9r9c9, 2r7c7, 9r7c5, 2r9c5, 6r9c7, 1r9c8
13) whip[4]: r2c2{n6 n8}- b3n8{r2c7 r3c8}- c8n7{r3 r1}- c6n7{r1 .} => -6r2c6
STTE

This makes a total of 13 steps (14 if you want to count the hidden pairs).
N.B: the results are almost identical with 15 tests done by disabling criterion 2.
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Get a solution within few steps?

Postby denis_berthier » Wed Sep 29, 2021 6:09 am

Hi François,

That's finally a good cut in the number of steps
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles