Gata de mar

Post puzzles for others to solve here.

Gata de mar

Postby eleven » Sun Sep 19, 2021 9:19 pm

Code: Select all
 +-------+-------+-------+
 | 1 8 . | . . 6 | . . . |
 | 7 . . | 4 . . | . . . |
 | . . 3 | . . . | . 6 4 |
 +-------+-------+-------+
 | . 7 8 | 6 . 4 | . . 9 |
 | . 4 . | 7 . 8 | . 5 . |
 | . . . | . 5 9 | . . . |
 +-------+-------+-------+
 | . . . | . . . | . 8 . |
 | . . . | 5 . . | 7 . . |
 | 4 . 9 | . . . | . . 5 |
 +-------+-------+-------+
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Gata de mar

Postby shye » Tue Sep 21, 2021 2:01 am

this puzzle was very hard! im betting theres a trick to it i didnt spot, because the path i got was 4 steps '''>_>

Code: Select all
.--------------.------------------.-------------------.
| 1   8    4   | 239   29     6   | 5      2379  237  |
| 7   6    5   | 4    #1289   123 | 12389  1239  1238 |
| 2   9    3   |#18    7      5   |#18     6     4    |
:--------------+------------------+-------------------:
| 5   7    8   | 6    *123    4   |*123    123   9    |
| 9   4    12  | 7    *123    8   |*1236   5     1236 |
| 36  123  126 |#2-1   5      9   | 48     47    78   |
:--------------+------------------+-------------------:
| 36  5    7   | 1239  12469  123 | 49     8     1236 |
| 8   123  126 | 5     49     123 | 7      49    1236 |
| 4   123  9   | 1238 #1268   7   |#1236   123   5    |
'--------------'------------------'-------------------'

   1r45c7 - 1r3c7 ================ 1r3c4
   //                                \\
1r45c5                                \\      => -1r6c4
   \\                                  \\
   6r5c7 - 6r9c7 = (6-8)r9c5 = 8r2c5 - 8r3c4

UR chain
23UR in r45c57, guardians 1r45c57 & 6r5c7
all guardians lead to -1r6c4

few singles and locked candidates

Code: Select all
.-------------.----------------.-------------------.
| 1   8    4  | 39   29    6   | 5      2379  237  |
| 7   6    5  | 4   #289   123 | 1239-8 1239 #1238 |
| 2   9    3  | 18   7     5   | 18     6     4    |
:-------------+----------------+-------------------:
| 5   7    8  | 6    13    4   | 123    123   9    |
| 9   4    2  | 7    13    8   | 136    5     136  |
| 36  13   16 | 2    5     9   |#48     47   #78   |
:-------------+----------------+-------------------:
| 36  5    7  | 139 #46-29 123 |#49     8     1236 |
| 8   123  16 | 5    49    123 | 7      49    1236 |
| 4   123  9  | 138 #68-2  7   | 1236   123   5    |
'-------------'----------------'-------------------'

CNL
(4=8)r6c7 - 8r6c9 = 8r2c9 - 8r2c5 = (8-6)r9c5 = (6-4)r7c5 = 4r7c7 - 4r6c7 loop
=> -8r2c7, -2r9c5, -29r7c5

Code: Select all
.-------------.---------------.------------------.
| 1   8    4  |#39   29   6   | 5     2379  237  |
| 7   6    5  | 4    289 #13  | 1239  1239  1238 |
| 2   9    3  |#18   7    5   | 18    6     4    |
:-------------+---------------+------------------:
| 5   7    8  | 6    13   4   | 123   123   9    |
| 9   4    2  | 7    13   8   | 136   5     136  |
| 36  13   16 | 2    5    9   | 48    47    78   |
:-------------+---------------+------------------:
| 36  5    7  |#39-1 46   123 | 49    8     1236 |
| 8   123  16 | 5    49   123 | 7     49    1236 |
| 4   123  9  | 138  68   7   | 1236  123   5    |
'-------------'---------------'------------------'

l-wing
1r3c4 = (1-3)r2c6 = (3-9)r1c4 = 9r7c4
=> -1r7c4

some pairs, then the hard step:

Code: Select all
.-------------.--------------.------------------.
| 1   8    4  |#39  29   6   | 5     2379 #237  |
| 7   6    5  | 4  #289 #13  | 1239  1239 #1238 |
| 2   9    3  |#18  7    5   | 18    6     4    |
:-------------+--------------+------------------:
| 5   7    8  | 6   13   4   | 123   123   9    |
| 9   4    2  | 7   13   8   | 136   5    #136  |
| 36  13   16 | 2   5    9   | 48    47    78   |
:-------------+--------------+------------------:
|#36  5    7  |#39  46   12  | 49    8     12   |
| 8   123 #16 | 5   49   123 | 7     49   #1236 |
| 4   123  9  | 18  68   7   | 1236  123   5    |
'-------------'--------------'------------------'

 3r1c9 - 3r1c4 =========================..
   ||                                    \\
(3-8)r2c9 = 8r2c5 - (8=1)r3c4 - 1r2c6 = 3r2c6 -.
   ||                                           \
(3-6)r5c9 = 6r8c9 - 6r8c3 = (6-3)r7c1 = 3r7c4    |
   ||                                        \   |
 3r8c9 --------------------------------------  3r8c6



kraken column (3)r1258c9
-3r8c6 stte

even tho this ended up much longer than id normally be happy with, it was fun to map out! very curious to know your own path for it
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Gata de mar

Postby denis_berthier » Tue Sep 21, 2021 6:41 am

.
SER = 8.3

I like this puzzle because it illustrates perfectly how additional requirements about the number of steps can transform an easy puzzle into a hard one.

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 1      8      4      ! 239    29     6      ! 5      2379   237    !
   ! 7      6      5      ! 4      1289   123    ! 12389  1239   1238   !
   ! 2      9      3      ! 18     7      5      ! 18     6      4      !
   +----------------------+----------------------+----------------------+
   ! 5      7      8      ! 6      123    4      ! 123    123    9      !
   ! 9      4      126    ! 7      123    8      ! 1236   5      1236   !
   ! 36     123    126    ! 12     5      9      ! 12468  1247   12678  !
   +----------------------+----------------------+----------------------+
   ! 36     5      7      ! 1239   12469  123    ! 123469 8      1236   !
   ! 8      123    126    ! 5      12469  123    ! 7      12349  1236   !
   ! 4      123    9      ! 1238   1268   7      ! 1236   123    5      !
   +----------------------+----------------------+----------------------+
148 candidates.


This puzzle has a solution in S+W5, or even in the simplest S+Z5 (Subsets + z-chains; i.e. only reversible patterns) - which is a priori not very hard. In these resolution theories, the simplest-first strategy finds 30 relatively elementary non-W1 steps.
Here is the S+Z5 solution: Show
hidden-pairs-in-a-row: r8{n4 n9}{c5 c8} ==> r8c8≠3, r8c8≠2, r8c8≠1, r8c5≠6, r8c5≠2, r8c5≠1
hidden-pairs-in-a-block: b9{n4 n9}{r7c7 r8c8} ==> r7c7≠6, r7c7≠3, r7c7≠2, r7c7≠1
finned-x-wing-in-rows: n9{r8 r1}{c8 c5} ==> r2c5≠9
whip[1]: r2n9{c8 .} ==> r1c8≠9
finned-x-wing-in-rows: n6{r8 r5}{c3 c9} ==> r6c9≠6
hidden-triplets-in-a-row: r6{n4 n7 n8}{c7 c8 c9} ==> r6c9≠2, r6c9≠1, r6c8≠2, r6c8≠1, r6c7≠6, r6c7≠2, r6c7≠1
whip[1]: r6n6{c3 .} ==> r5c3≠6
biv-chain[3]: c7n9{r2 r7} - c4n9{r7 r1} - b2n3{r1c4 r2c6} ==> r2c7≠3
z-chain[3]: c4n9{r7 r1} - b2n3{r1c4 r2c6} - c6n1{r2 .} ==> r7c4≠1
z-chain[3]: c4n9{r7 r1} - b2n3{r1c4 r2c6} - c6n2{r2 .} ==> r7c4≠2
z-chain[3]: c5n8{r9 r2} - r3c4{n8 n1} - b5n1{r6c4 .} ==> r9c5≠1
biv-chain[4]: r1c5{n2 n9} - r8c5{n9 n4} - c8n4{r8 r6} - c8n7{r6 r1} ==> r1c8≠2
biv-chain[3]: r1c8{n3 n7} - c9n7{r1 r6} - c9n8{r6 r2} ==> r2c9≠3
z-chain[3]: c6n2{r8 r2} - r1n2{c4 c9} - r7n2{c9 .} ==> r9c5≠2
z-chain[3]: c6n2{r8 r2} - r1n2{c5 c9} - r7n2{c9 .} ==> r9c4≠2
biv-chain[4]: r3c7{n1 n8} - b2n8{r3c4 r2c5} - r9c5{n8 n6} - c7n6{r9 r5} ==> r5c7≠1
biv-chain[4]: c5n8{r2 r9} - b8n6{r9c5 r7c5} - r7n4{c5 c7} - c7n9{r7 r2} ==> r2c7≠8
biv-chain[4]: c8n9{r2 r8} - b9n4{r8c8 r7c7} - r6c7{n4 n8} - r3c7{n8 n1} ==> r2c8≠1
z-chain[4]: b5n1{r5c5 r6c4} - c4n2{r6 r1} - b2n3{r1c4 r2c6} - c6n1{r2 .} ==> r7c5≠1
biv-chain[5]: c5n6{r7 r9} - c5n8{r9 r2} - b3n8{r2c9 r3c7} - r6c7{n8 n4} - r7c7{n4 n9} ==> r7c5≠9
biv-chain[5]: c5n6{r7 r9} - c5n8{r9 r2} - b3n8{r2c9 r3c7} - r6c7{n8 n4} - r7n4{c7 c5} ==> r7c5≠2
whip[1]: b8n2{r8c6 .} ==> r2c6≠2
hidden-pairs-in-a-row: r7{n1 n2}{c6 c9} ==> r7c9≠6, r7c9≠3, r7c6≠3
z-chain[3]: b9n3{r9c8 r8c9} - r8n6{c9 c3} - r7c1{n6 .} ==> r9c2≠3
biv-chain[4]: c2n3{r6 r8} - r7n3{c1 c4} - c4n9{r7 r1} - c4n2{r1 r6} ==> r6c2≠2
whip[1]: c2n2{r9 .} ==> r8c3≠2
biv-chain-cn[3]: c3n2{r5 r6} - c3n6{r6 r8} - c9n6{r8 r5} ==> r5c9≠2
biv-chain[3]: r9c2{n2 n1} - r8c3{n1 n6} - b9n6{r8c9 r9c7} ==> r9c7≠2
z-chain[3]: b7n1{r8c3 r9c2} - r9n2{c2 c8} - r7c9{n2 .} ==> r8c9≠1
z-chain[4]: r9c2{n1 n2} - r9c8{n2 n3} - r2n3{c8 c6} - c6n1{r2 .} ==> r9c4≠1
whip[1]: b8n1{r8c6 .} ==> r2c6≠1
naked-single ==> r2c6=3
naked-pairs-in-a-block: b2{r1c4 r1c5}{n2 n9} ==> r2c5≠2
whip[1]: r2n2{c9 .} ==> r1c9≠2
biv-chain[3]: r8n3{c9 c2} - r7c1{n3 n6} - r8n6{c3 c9} ==> r8c9≠2
z-chain[4]: r7c9{n1 n2} - r2c9{n2 n8} - r2c5{n8 n1} - r4n1{c5 .} ==> r5c9≠1
whip[1]: b6n1{r4c8 .} ==> r4c5≠1
naked-pairs-in-a-column: c9{r5 r8}{n3 n6} ==> r1c9≠3
stte

[Edit: the solution I had first given was in Z5 only, without Subsets]

After checking there's no 1- or 2- step solution with whips of length ≤ 8, I tried the (very slow) SudoRules fewer step algorithm in S+W8
The first two tries gave solutions with 10 steps - a significant reduction in the number of steps, at the cost of using harder and longer chains than necessary.
The third try gave a solution with 9 steps. I stopped after 9 tries, which didn't give a shorter path. Here is the result of the 3rd try:

Code: Select all
=====> STEP #1
hidden-triplets-in-a-row: r6{n4 n7 n8}{c7 c8 c9} ==> r6c9≠1, r6c9≠6, r6c9≠2, r6c8≠2, r6c8≠1, r6c7≠6, r6c7≠2, r6c7≠1
whip[1]: r6n6{c3 .} ==> r5c3≠6
=====> STEP #2
hidden-pairs-in-a-block: b9{n4 n9}{r7c7 r8c8} ==> r7c7≠3, r8c8≠3, r8c8≠2, r8c8≠1, r7c7≠6, r7c7≠2, r7c7≠1
=====> STEP #3
hidden-pairs-in-a-row: r8{n4 n9}{c5 c8} ==> r8c5≠6, r8c5≠2, r8c5≠1
=====> STEP #4
biv-chain[5]: r7n4{c5 c7} - r6c7{n4 n8} - r3n8{c7 c4} - b8n8{r9c4 r9c5} - b8n6{r9c5 r7c5} ==> r7c5≠2, r7c5≠1, r7c5≠9
=====> STEP #5
whip[7]: r1c5{n2 n9} - c4n9{r1 r7} - r8c5{n9 n4} - c8n4{r8 r6} - c8n7{r6 r1} - r1n2{c8 c9} - r7n2{c9 .} ==> r2c6≠2
whip[1]: c6n2{r8 .} ==> r7c4≠2, r9c4≠2, r9c5≠2
=====> STEP #6
whip[8]: r3c4{n1 n8} - r9c4{n8 n3} - r7c4{n3 n9} - r8c5{n9 n4} - c8n4{r8 r6} - c8n7{r6 r1} - r1n3{c8 c9} - b9n3{r7c9 .} ==> r6c4≠1
naked-single ==> r6c4=2
hidden-single-in-a-block ==> r5c3=2
whip[1]: b5n1{r5c5 .} ==> r2c5≠1, r9c5≠1
=====> STEP #7
finned-x-wing-in-rows: n9{r8 r1}{c8 c5} ==> r2c5≠9
whip[1]: r2n9{c8 .} ==> r1c8≠9
=====> STEP #8
whip[7]: r1n3{c9 c4} - r1n9{c4 c5} - r8c5{n9 n4} - r7c5{n4 n6} - r9n6{c5 c7} - r9n3{c7 c2} - r7c1{n3 .} ==> r2c8≠3
=====> STEP #9
whip[6]: c9n8{r6 r2} - r2c5{n8 n2} - r1c5{n2 n9} - r8n9{c5 c8} - r2c8{n9 n1} - r3c7{n1 .} ==> r6c9≠7
stte


François, I think your algorithm is much faster than mine. Could you try this puzzle? I think it's possible to get less than 9 steps in W8.
[Edit] W8 instead of W7 - thanks François
Last edited by denis_berthier on Tue Sep 21, 2021 11:04 am, edited 2 times in total.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gata de mar

Postby denis_berthier » Tue Sep 21, 2021 6:56 am

Hi Shye
Trying to understand how you count steps. I added my count in blue. Can you correct me if I misinterpreted?
shye wrote:the path i got was 4 steps
STEP 1:
Code: Select all
   1r45c7 - 1r3c7 ================ 1r3c4
   //                                \\
1r45c5                                \\      => -1r6c4
   \\                                  \\
   6r5c7 - 6r9c7 = (6-8)r9c5 = 8r2c5 - 8r3c4


STEP 2:
UR chain
23UR in r45c57, guardians 1r45c57 & 6r5c7

few singles and locked candidates

STEP 3:
(4=8)r6c7 - 8r6c9 = 8r2c9 - 8r2c5 = (8-6)r9c5 = (6-4)r7c5 = 4r7c7 - 4r6c7 loop
=> -8r2c7, -2r9c5, -29r7c5

STEP 4:
l-wing
1r3c4 = (1-3)r2c6 = (3-9)r1c4 = 9r7c4
=> -1r7c4

STEPS 5 to XXX:
some pairs, then the hard step:

STEP XXX+1:
Code: Select all
 3r1c9 - 3r1c4 =========================..
   ||                                    \\
(3-8)r2c9 = 8r2c5 - (8=1)r3c4 - 1r2c6 = 3r2c6 -.
   ||                                           \
(3-6)r5c9 = 6r8c9 - 6r8c3 = (6-3)r7c1 = 3r7c4    |
   ||                                        \   |
 3r8c9 --------------------------------------  3r8c6

kraken column (3)r1258c9
-3r8c6 stte

Could you say how many pairs there are in what I've numbered steps 5 to XXX?
Trying also to see which rating your last step would be granted in my approach (number of CSP-Variables used - basically the number of = signs, counting only one for the vertical 3 (CSP-Variable c9n3): 8
I'd call the pattern a super-forcing-braid[8] - the "super" because it starts from 4 possibilities instead of the 2 for forcing-braids.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gata de mar

Postby denis_berthier » Tue Sep 21, 2021 8:09 am

.
As shye, I suppose there's some trick to simlipfy the solution. And as the puzzle was proposed by eleven, I guess it might be related to variable replacement. So, here are all the views for the resolution state after Singles and whips[1]:
Code: Select all
standard rc-view:
Physical rows are rows, physical columns are columns. Data are digits.
   1         8         4         239       29        6         5         2379      237       
   7         6         5         4         1289      123       12389     1239      1238     
   2         9         3         18        7         5         18        6         4         
   5         7         8         6         123       4         123       123       9         
   9         4         126       7         123       8         1236      5         1236     
   36        123       126       12        5         9         12468     1247      12678     
   36        5         7         1239      12469     123       123469    8         1236     
   8         123       126       5         12469     123       7         12349     1236     
   4         123       9         1238      1268      7         1236      123       5         

The following representations, first introduced in the "Hidden Logic of Sudoku"  (HLS, 2007),
may be used e.g. to more easily spot:
rn-, cn- or bn- bivalue pairs (also named bilocal pairs),
mono-typed-chains (the 2D-chains of HLS),
Hidden Subsets and Fishes (which will appear as Naked Subsets in the proper space).

rn-view:
Physical rows are rows, physical columns are digits. Data are columns.
   1         4589      489       3         7         6         89        2         458       
   56789     56789     6789      4         3         2         1         579       578       
   47        1         3         9         6         8         5         47        2         
   578       578       578       6         1         4         2         3         9         
   3579      3579      579       2         8         379       4         6         1         
   234789    234789    12        78        5         1379      89        79        6         
   45679     45679     14679     57        2         1579      3         8         457       
   235689    235689    2689      58        4         359       7         1         58       
   24578     24578     2478      1         9         57        6         45        3         

cn-view:
Physical rows are columns, physical columns are digits. Data are rows.
   1         3         67        9         4         67        2         8         5         
   689       689       689       5         7         2         4         1         3         
   568       568       3         1         2         568       7         4         9         
   3679      1679      179       2         8         4         5         39        17       
   245789    1245789   45        78        6         789       3         29        1278     
   278       278       278       4         3         1         9         5         6         
   2345679   245679    24579     67        1         5679      8         236       27       
   24689     124689    12489     68        5         3         16        7         128       
   25678     125678    12578     3         9         5678      16        26        4         

bn-view:
Physical rows are blocks, physical columns are digits. Data are positions in a block.
   1         7         9         3         6         5         4         2         8         
   567       1256      16        4         9         3         8         57        125       
   4567      23456     23456     9         1         8         23        467       245       
   689       689       78        5         1         679       2         3         4         
   257       257       25        3         8         1         4         6         9         
   1246789   1246789   1246      78        5         4679      89        79        3         
   568       568       158       7         2         16        3         4         9         
   1235678   1235678   1367      25        4         258       9         78        125       
   135678    135678    135678    15        9         1367      4         2         15


It appears there are several opportunities for replacements, but I don't have time to explore this idea further.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gata de mar

Postby totuan » Tue Sep 21, 2021 8:43 am

Code: Select all
 *--------------------------------------------------------------------*
 | 1      8      4      | 239    29     6      | 5      2379   237    |
 | 7      6      5      | 4      1289   123    | 1289-3 1239   1238   |
 | 2      9      3      | 18     7      5      | 18     6      4      |
 |----------------------+----------------------+----------------------|
 | 5      7      8      | 6      123    4      | 123    123    9      |
 | 9      4      12     | 7      123    8      | 1236   5      1236   |
 | 36     123    126    | 12     5      9      | 48     47     78     |
 |----------------------+----------------------+----------------------|
 | 36     5      7      | 1239   12469  123    | 49     8      1236   |
 | 8      123    126    | 5      49     123    | 7      49     1236   |
 | 4      123    9      | 128-3  1268   7      | 1236   123    5      |
 *--------------------------------------------------------------------*

This one is not hard to solve but quite hard to find one step. Many (123) on grid, my path’s 5 steps and not nice :D . Maybe eleven has a nice one.
01: (3)r2c6=(3-9)r1c4=r7c4-r7c7=r2c7 => r2c7<>3
02: Present as diagram: => r9c4<>3
Code: Select all
(3)r2c8-(3)r2c6=r1c4*       
 ||
(3-7)r1c8=(7-4)r6c8=r6c7-r7c7=(4-6)r7c5=(6-8)r9c5=r9c4*
 ||
(3)r4c8=r45c7=r9c7*
 ||
(3)r9c8*

Code: Select all
 *--------------------------------------------------------------------*
 | 1      8      4      | 39     29     6      | 5      2379   27-3   |
 | 7      6      5      | 4      1289   123    | 1289   1239   128-3  |
 | 2      9      3      | 18     7      5      | 18     6      4      |
 |----------------------+----------------------+----------------------|
 | 5      7      8      | 6      123    4      | 123    123    9      |
 | 9      4      12     | 7      123    8      | 1236   5      1236   |
 | 36     123    126    | 12     5      9      | 48     47     78     |
 |----------------------+----------------------+----------------------|
 | 36     5      7      | 39     12469  123    | 49     8      1236   |
 | 8      123    126    | 5      49     123    | 7      49     1236   |
 | 4      123    9      | 128    1268   7      | 1236   123    5      |
 *--------------------------------------------------------------------*

03: (3)r2c6=(3)r1c4-(3=9)r7c4-(9=4)r7c7-(4=8)r6c7-r6c9=r2c9 => r2c9<>3
04: (3)r1c4=r7c4-(3=6)r7c1-r7c5=(68)r9c45-r3c4=r3c7-(8=4)r6c7-(4=7)r6c8-r1c8=r1c9 => r1c9<>3
Code: Select all
 *--------------------------------------------------------------------*
 | 1      8      4      | 39     29     6      | 5      379    27     |
 | 7      6      5      | 4      1289   123    | 1289   39     128    |
 | 2      9      3      | 18     7      5      | 18     6      4      |
 |----------------------+----------------------+----------------------|
 | 5      7      8      | 6      123    4      | 123    12     9      |
 | 9      4      12     | 7      123    8      | 1236   5      1236   |
 | 36     123    126    | 12     5      9      | 48     47     78     |
 |----------------------+----------------------+----------------------|
 | 36     5      7      | 39     1249-6 123    | 49     8      1236   |
 | 8      123    126    | 5      49     123    | 7      49     1236   |
 | 4      123    9      | 128    1268   7      | 1236   12     5      |
 *--------------------------------------------------------------------*

05: (6)r9c5=(6-3)r9c7=r9c2-(3=6)r7c1 => r7c5<>6, stte
I can reduce to 3 steps by one more diagram.

For anyone likes one step :D.
Code: Select all
 *--------------------------------------------------------------------*
 | 1      8      4      |@239    29     6      | 5     #2379   237    |
 | 7      6      5      | 4      1289  @123    |#12389 @1239  #1238   |
 | 2      9      3      | 18     7      5      | 18     6      4      |
 |----------------------+----------------------+----------------------|
 | 5      7      8      | 6      123    4      | 123   #123    9      |
 | 9      4      12     | 7      123    8      | 1236   5      1236   |
 | 36     123    126    | 12     5      9      | 48     47     78     |
 |----------------------+----------------------+----------------------|
 | 36     5      7      |#1239   1249-6 123    | 49     8      1236   |
 | 8      123    126    | 5      49     123    | 7      49     1236   |
 | 4     #123    9      |@1238   1268   7      |#1236  @123    5      |
 *--------------------------------------------------------------------*

Look at 3’s: if removing 3’s on # cells => based one 3’s on @ cells then invalid 3’s B2.
Present as diagram: => r7c5<>6, stte
Code: Select all
DP 3’s
 ||
(3-9)r7c4=(49)r78c5* 
 ||     
(3-7)r1c8=(7-4)r6c8=(49)r67c7-r7c4=r1c4
 ||
(3)r2c7-----(9)r3c7=(9-4)r7c7=r7c5* 
 ||       |         
 ||      (3)r2c7
 ||       ||
(3)r4c8--(3)r45c7
 ||       ||
 ||      (3)r9c7
 ||       |
(3)r9c7----(6)r9c7=r9c5*
 ||
(3-8)r2c9=r6c9-(8=4)r6c7-r7c7=r7c5*
 ||
(3)r9c2-(3=6)r7c1*

Thanks for nice puzzle.
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: Gata de mar

Postby eleven » Tue Sep 21, 2021 10:06 am

Thanks for your great efforts. I hoped there would be a more elegant solution. My shark has 5 fins.
As soon as one of the 3's in r1c49, r9c4 is eliminated, you have no chance to spot it anymore.
Code: Select all
 *--------------------------------------------------------------------*
 |  1    8     4     | #239    29      6     |  5      *2379 a#237    |
 |  7    6     5     |  4     f1289    123   |  12389   1239  *123-8  |
 |  2    9     3     |  18     7       5     |  18      6      4      |
 |-------------------+-----------------------+------------------------|
 |  5    7     8     |  6      123     4     |  123     123    9      |
 |  9    4     12    |  7      123     8     | c1236    5     *1236   |
 |  36   123   126   |  12     5       9     |  48      47    b78     |
 |-------------------+-----------------------+------------------------|
 | g36   5     7     | *1239  h12469   123   |  49      8     #1236   |
 |  8    123   126   |  5      49      123   |  7       49    #1236   |
 |  4   *123   9     | #1238  e1268    7     |d#1236   #123    5      |
 *--------------------------------------------------------------------*

Oddagon 3 (r1c4,r178c9,r9c784) with 5 guardians:
3r2c9
(3-7)r1c8 = 78r16c9
(3-6)r5c9 = r5c7 - r9c7 = (6-8)r9c5 = 8r2c5
3r7c4 | r9c2 - (3=6)r7c1 - r7c5 = (6-8)r9c5 = 8r2c5
=> -8r2c9, stte
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Gata de mar

Postby DEFISE » Tue Sep 21, 2021 10:31 am

denis_berthier wrote:.
François, I think your algorithm is much faster than mine. Could you try this puzzle? I think it's possible to get less than 9 steps in W7.

Hi Denis,
your 9 steps solution is in W8, not in W7 !
With my initial algo: in W7 the best I found is 10 steps (with 30 tries).
But in W8 I found this 6 steps solution, with only 2 whips, on the 4th try:
N.B1: less than 12s by try.
N.B2: My initial algo seeks to minimize the number of whips. Then I count the subsets by hand.

14 singles
Bloc/line : 3b4r6 => -3r6c4 -3r6c7 -3r6c8 -3r6c9
Bloc/line : 3b5c5 => -3r1c5 -3r2c5 -3r7c5 -3r8c5 -3r9c5
Hidden pairs: 49r8c58 => -1r8c5 -2r8c5 -6r8c5 -1r8c8 -2r8c8 -3r8c8
Hidden pairs: 49b9p15 => -1r7c7 -2r7c7 -3r7c7 -6r7c7
Hidden triplets: 478r6c789 => -1r6c7 -2r6c7 -6r6c7 -1r6c8 -2r6c8 -1r6c9 -2r6c9 -6r6c9
Bloc/line : 6r6b4 => -6r5c3
whip[7]: r9n8{c4 c5}- c5n6{r9 r7}- r7n4{c5 c7}- r6n4{c7 c8}- c8n7{r6 r1}- r1n3{c8 c9}- b9n3{r7c9 .} => -3r9c4
Hidden pairs: 39c4r17 => -2r1c4 -1r7c4 -2r7c4
whip[8]: c5n8{r2 r9}- r9n6{c5 c7}- r5n6{c7 c9}- r8n6{c9 c3}- r7c1{n6 n3}- r9n3{c2 c8}- c9n3{r7 r1}- c4n3{r1 .} => -8r2c9
STTE
Last edited by DEFISE on Tue Sep 21, 2021 11:10 am, edited 3 times in total.
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: Gata de mar

Postby totuan » Tue Sep 21, 2021 11:01 am

eleven wrote:My shark has 5 fins.

Nice find! First time I solve puzzle based on this concept, so my shark has 7 fins :lol:

Again, thanks for your puzzle.
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: Gata de mar

Postby denis_berthier » Tue Sep 21, 2021 11:09 am

DEFISE wrote:
denis_berthier wrote:.
François, I think your algorithm is much faster than mine. Could you try this puzzle? I think it's possible to get less than 9 steps in W7.

your 9 steps solution is in W8, not in W7 !

OK, corrected

DEFISE wrote:With my initial algo: in W7 the best I found is 10 steps (with 30 tries).
But in W8 I found this 6 steps solution, with only 2 whips, on the 4th try

Great!
So, now you can also have Subsets in the algo!
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gata de mar

Postby denis_berthier » Tue Sep 21, 2021 11:22 am

eleven wrote:Thanks for your great efforts. I hoped there would be a more elegant solution. My shark has 5 fins.
As soon as one of the 3's in r1c49, r9c4 is eliminated, you have no chance to spot it anymore.
Code: Select all
 *--------------------------------------------------------------------*
 |  1    8     4     | #239    29      6     |  5      *2379 a#237    |
 |  7    6     5     |  4     f1289    123   |  12389   1239  *123-8  |
 |  2    9     3     |  18     7       5     |  18      6      4      |
 |-------------------+-----------------------+------------------------|
 |  5    7     8     |  6      123     4     |  123     123    9      |
 |  9    4     12    |  7      123     8     | c1236    5     *1236   |
 |  36   123   126   |  12     5       9     |  48      47    b78     |
 |-------------------+-----------------------+------------------------|
 | g36   5     7     | *1239  h12469   123   |  49      8     #1236   |
 |  8    123   126   |  5      49      123   |  7       49    #1236   |
 |  4   *123   9     | #1238  e1268    7     |d#1236   #123    5      |
 *--------------------------------------------------------------------*

Oddagon 3 (r1c4,r178c9,r9c784) with 5 guardians:
3r2c9
(3-7)r1c8 = 78r16c9
(3-6)r5c9 = r5c7 - r9c7 = (6-8)r9c5 = 8r2c5
3r7c4 | r9c2 - (3=6)r7c1 - r7c5 = (6-8)r9c5 = 8r2c5
=> -8r2c9, stte


Starting from the same PM (obtained after more eliminations than mere Subsets and whips[1]):
Code: Select all
   +-------------------+-------------------+-------------------+
   ! 1     8     4     ! 239   29    6     ! 5     2379  237   !
   ! 7     6     5     ! 4     1289  123   ! 12389 1239  1238  !
   ! 2     9     3     ! 18    7     5     ! 18    6     4     !
   +-------------------+-------------------+-------------------+
   ! 5     7     8     ! 6     123   4     ! 123   123   9     !
   ! 9     4     12    ! 7     123   8     ! 1236  5     1236  !
   ! 36    123   126   ! 12    5     9     ! 48    47    78    !
   +-------------------+-------------------+-------------------+
   ! 36    5     7     ! 1239  12469 123   ! 49    8     1236  !
   ! 8     123   126   ! 5     49    123   ! 7     49    1236  !
   ! 4     123   9     ! 1238  1268  7     ! 1236  123   5     !
   +-------------------+-------------------+-------------------+


I can't find any oddagon. To which definition of an oddagon are you referring?
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gata de mar

Postby DEFISE » Tue Sep 21, 2021 11:42 am

denis_berthier wrote:So, now you can also have Subsets in the algo!

No, my initial algo tries only to minimize the number of whips and then I count subsets by hand.
You certainly read my previous post before I added the N.B.2 to it.
My second algo tries all possible combinations of rules (subsets + whips) but is of course much slower. I haven't used it here. It can be interesting when there are a lot of subsets, like in mith's puzzles.
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: Gata de mar

Postby denis_berthier » Tue Sep 21, 2021 12:16 pm

.
As none of the proposed solutions was very subtle, I wondered why not try the nukes?

Starting from the RS after Singles and Whips[1], a 1-step solution:

FORCING[3]-T&E(W1) applied to trivalue candidates n2r1c9, n3r1c9 and n7r1c9 :
===> 3 values decided in the three cases: n6r7c1 n3r6c1 n6r6c3
===> 63 candidates eliminated in the three cases: n2r1c4 n2r1c8 n9r1c8 n2r2c5 n9r2c5 n2r2c6 n1r2c7 n3r2c7 n8r2c7 n1r2c8 n2r2c9 n3r2c9 n2r4c5 n2r4c7 n3r4c8 n6r5c3 n2r5c5 n1r5c7 n3r5c7 n1r5c9 n2r5c9 n6r6c1 n3r6c2 n1r6c3 n2r6c3 n1r6c7 n2r6c7 n6r6c7 n1r6c8 n2r6c8 n1r6c9 n2r6c9 n6r6c9 n3r7c1 n1r7c4 n2r7c4 n1r7c5 n6r7c5 n2r7c6 n3r7c6 n1r7c7 n2r7c7 n3r7c7 n6r7c7 n1r7c9 n6r7c9 n1r8c2 n2r8c2 n6r8c3 n1r8c5 n2r8c5 n4r8c5 n1r8c6 n1r8c8 n2r8c8 n3r8c8 n2r8c9 n3r8c9 n3r9c4 n1r9c5 n2r9c5 n1r9c7 n2r9c7

Code: Select all
   +-------------+-------------+-------------+
   ! 1   8   4   ! 39  29  6   ! 5   37  237 !
   ! 7   6   5   ! 4   18  13  ! 29  239 18  !
   ! 2   9   3   ! 18  7   5   ! 18  6   4   !
   +-------------+-------------+-------------+
   ! 5   7   8   ! 6   13  4   ! 13  12  9   !
   ! 9   4   12  ! 7   13  8   ! 26  5   36  !
   ! 3   12  6   ! 12  5   9   ! 48  47  78  !
   +-------------+-------------+-------------+
   ! 6   5   7   ! 39  249 1   ! 49  8   23  !
   ! 8   3   12  ! 5   69  23  ! 7   49  16  !
   ! 4   123 9   ! 128 68  7   ! 36  123 5   !
   +-------------+-------------+-------------+

stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Gata de mar

Postby marek stefanik » Tue Sep 21, 2021 7:34 pm

eleven wrote:
Code: Select all
 *--------------------------------------------------------------------*
 |  1    8     4     | #239    29      6     |  5      *2379 a#237    |
 |  7    6     5     |  4     f1289    123   |  12389   1239  *123-8  |
 |  2    9     3     |  18     7       5     |  18      6      4      |
 |-------------------+-----------------------+------------------------|
 |  5    7     8     |  6      123     4     |  123     123    9      |
 |  9    4     12    |  7      123     8     | c1236    5     *1236   |
 |  36   123   126   |  12     5       9     |  48      47    b78     |
 |-------------------+-----------------------+------------------------|
 | g36   5     7     | *1239  h12469   123   |  49      8     #1236   |
 |  8    123   126   |  5      49      123   |  7       49    #1236   |
 |  4   *123   9     | #1238  e1268    7     |d#1236   #123    5      |
 *--------------------------------------------------------------------*

Oddagon 3 (r1c4,r178c9,r9c784) with 5 guardians:
3r2c9
(3-7)r1c8 = 78r16c9
(3-6)r5c9 = r5c7 - r9c7 = (6-8)r9c5 = 8r2c5
3r7c4 | r9c2 - (3=6)r7c1 - r7c5 = (6-8)r9c5 = 8r2c5
=> -8r2c9, stte

Nice move!
Can't believe I missed that when looking at the impossible 3-rookery (instead of that I got a more complicated version which was completely useless in the puzzle).

It's amazing how complicated it can be to decide if a 3-rookery has solutions.
I wonder what would a computer's path look like if it weren't given any 123s at all (considering the puzzle solved after all other digits have been correctly placed).

I've had a look at possible replacements, it seems that 1r9c8, 2r4c8 reduces the rating the most (it can then be solved with AICs without ALSs), but I don't think it helps with the number of steps.

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Gata de mar

Postby shye » Tue Sep 21, 2021 11:50 pm

eleven wrote:Thanks for your great efforts. I hoped there would be a more elegant solution. My shark has 5 fins.
As soon as one of the 3's in r1c49, r9c4 is eliminated, you have no chance to spot it anymore.

Oddagon 3 (r1c4,r178c9,r9c784) with 5 guardians

wow! very fancy deduction, more guardians than i'd normally check for :lol:

denis_berthier wrote:Hi Shye
Trying to understand how you count steps. I added my count in blue. Can you correct me if I misinterpreted?
...
Could you say how many pairs there are in what I've numbered steps 5 to XXX?

the UR chain in the first diagram is all one step, i just added some wording for it below. unless youre counting the locked 1s instead which is important for the l-wing later on, which case thats fine
there are two pairs that occur after the l-wing, but only the hidden 12 pair in r7 is needed, so to minimise steps only count that one

i usually consider locked candidates and hidden/naked tuples as not-a-step, but if we do count them in then my path would be a total of 6. but i guess at this point why not break down the last step into something more palatable (im not a fan of how the chain implies a 3 in r2c9 and r2c6 simultaneously, that much would be better split into two)

Code: Select all
.-------------.---------------.------------------.
| 1   8    4  | 39   29   6   | 5     2379  237  |
| 7   6    5  | 4   #289 #13  | 1239  1239 #128-3|
| 2   9    3  |#18   7    5   | 18    6     4    |
:-------------+---------------+------------------:
| 5   7    8  | 6    13   4   | 123   123   9    |
| 9   4    2  | 7    13   8   | 136   5     136  |
| 36  13   16 | 2    5    9   | 48    47    78   |
:-------------+---------------+------------------:
| 36  5    7  | 39   46   12  | 49    8     12   |
| 8   123  16 | 5    49   123 | 7     49    1236 |
| 4   123  9  | 138  68   7   | 1236  123   5    |
'-------------'---------------'------------------'

(3=1)r2c6 - (1=8)r3c4 - 8r2c5 = 8r2c9
=> -3r2c9

Code: Select all
.-------------.---------------.------------------.
| 1   8    4  |#39   29   6   | 5     2379 #237  |
| 7   6    5  | 4    289 #13  | 1239  1239  128  |
| 2   9    3  | 18   7    5   | 18    6     4    |
:-------------+---------------+------------------:
| 5   7    8  | 6    13   4   | 123   123   9    |
| 9   4    2  | 7    13   8   | 136   5    #136  |
| 36  13   16 | 2    5    9   | 48    47    78   |
:-------------+---------------+------------------:
|#36  5    7  |#39   46   12  | 49    8     12   |
| 8   123 #16 | 5    49   12-3| 7     49   #1236 |
| 4   123  9  | 138  68   7   | 1236  123   5    |
'-------------'---------------'------------------'

 3r1c9 - 3r1c4 ========================== 3r2c6
   ||                                         \
(3-6)r5c9 = 6r8c9 - 6r8c3 = (6-3)r7c1 = 3r7c4  \
   ||                                        \  \
 3r8c9 -------------------------------------  3r8c6

kraken column (3)r158c9
-3r8c6 stte
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Next

Return to Puzzles