i don't know if this has been noticed
a template can be considered as a permutation matrix of size 9 operating on (1 2 3 4 5 6 7 8 9) and as all templates are distinct it follows that there is a bijection between the set of templates and the set of induced permutations: the template permutations
template permutations are compatible if they do not have the same digit in the same position
a puzzle solution is a set of 9 compatible template permutations
it is possible to develop a resolution technique using only permutations very similar to that of the templates
initialization:
- construct the set of possible permutations
- trim the set by removing all permutations that are not template permutations, from there only template permutations remain
- update the resolution state
then:
- build the set of compatible template permutations of size 2
- retrieve from the combinations the set of permutations
- update the resolution state
...build the set of compatible template permutations of size n+1
etc.
an example:
- Code: Select all
. . . . . 4 8 1 .
. 5 . . 9 . . . 3
. . . . . 2 . . 6
. . . . . . 2 . 8
. 4 . . 5 . . 7 .
3 . 1 . . . . . .
6 . . 7 . . . . .
9 . . . 1 . . 2 .
. 1 4 3 . . . . .
.....481..5..9...3.....2..6......2.8.4..5..7.3.1......6..7.....9...1..2..143.....
after singles:
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 389 389 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 2689 5 3 169 7 19
3 2689 1 24689 2468 7 4569 569 459
6 238 358 7 248 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
125 candidates.
the permutation table
the figures in the table represent the columns
- Code: Select all
r1 r2 r3 r4 r5 r6 r7 r8 r9
n1 8 1 4 6 79 3 79 5 2
n2 9 3 6 7 14 245 25 8 15
n3 5 9 23 8 6 1 237 237 4
n4 6 8 1 45 2 4579 579 479 3
n5 4 2 78 1 5 789 36789 3679 678
n6 23 46 9 2345 347 24578 1 467 5678
n7 1 7 5 23 8 6 4 23 9
n8 7 46 23 9 134 245 23568 2346 1568
n9 23 5 2378 234 3479 24789 6789 1 678
and here all the permutations:
- Code: Select all
1: 2: ((8 1 4 6 7 3 9 5 2) (8 1 4 6 9 3 7 5 2))
2: 3: ((9 3 6 7 1 4 2 8 5) (9 3 6 7 4 2 5 8 1) (9 3 6 7 4 5 2 8 1))
3: 4: ((5 9 2 8 6 1 3 7 4) (5 9 3 8 6 1 2 7 4) (5 9 2 8 6 1 7 3 4)
(5 9 3 8 6 1 7 2 4))
4: 8: ((6 8 1 4 2 5 7 9 3) (6 8 1 5 2 4 7 9 3) (6 8 1 4 2 7 5 9 3)
(6 8 1 4 2 5 9 7 3) (6 8 1 5 2 4 9 7 3) (6 8 1 4 2 9 5 7 3)
(6 8 1 5 2 7 9 4 3) (6 8 1 5 2 9 7 4 3))
5: 11: ((4 2 7 1 5 9 3 6 8) (4 2 7 1 5 9 6 3 8) (4 2 8 1 5 9 3 6 7)
(4 2 8 1 5 9 6 3 7) (4 2 7 1 5 8 3 9 6) (4 2 8 1 5 7 3 9 6)
(4 2 8 1 5 9 3 7 6) (4 2 7 1 5 8 9 3 6) (4 2 8 1 5 7 9 3 6)
(4 2 7 1 5 9 8 3 6) (4 2 8 1 5 9 7 3 6))
6: 23: ((2 6 9 3 4 5 1 7 8) (3 6 9 2 4 5 1 7 8) (2 6 9 4 3 5 1 7 8)
(2 6 9 5 3 4 1 7 8) (3 6 9 5 4 2 1 7 8) (2 4 9 5 3 7 1 6 8)
(2 4 9 3 7 5 1 6 8) (3 4 9 2 7 5 1 6 8) (3 4 9 5 7 2 1 6 8)
(2 6 9 5 3 7 1 4 8) (2 6 9 3 7 5 1 4 8) (3 6 9 2 7 5 1 4 8)
(3 6 9 5 7 2 1 4 8) (2 4 9 5 3 8 1 6 7) (2 6 9 5 3 8 1 4 7)
(2 4 9 5 3 8 1 7 6) (2 6 9 3 4 8 1 7 5) (3 6 9 2 4 8 1 7 5)
(2 6 9 4 3 8 1 7 5) (2 4 9 3 7 8 1 6 5) (3 4 9 2 7 8 1 6 5)
(2 6 9 3 7 8 1 4 5) (3 6 9 2 7 8 1 4 5))
7: 2: ((1 7 5 2 8 6 4 3 9) (1 7 5 3 8 6 4 2 9))
8: 20: ((7 4 3 9 1 2 5 6 8) (7 4 2 9 1 5 3 6 8) (7 4 3 9 1 5 2 6 8)
(7 6 3 9 1 2 5 4 8) (7 6 2 9 1 5 3 4 8) (7 6 3 9 1 5 2 4 8)
(7 4 2 9 1 5 6 3 8) (7 6 2 9 1 4 5 3 8) (7 4 3 9 1 5 6 2 8)
(7 6 3 9 1 4 5 2 8) (7 4 2 9 1 5 8 3 6) (7 4 3 9 1 5 8 2 6)
(7 4 3 9 1 2 8 6 5) (7 6 3 9 1 2 8 4 5) (7 6 2 9 1 4 8 3 5)
(7 6 3 9 1 4 8 2 5) (7 4 2 9 3 5 8 6 1) (7 6 2 9 3 5 8 4 1)
(7 6 2 9 4 5 8 3 1) (7 6 3 9 4 5 8 2 1))
9: 47: ((2 5 3 4 7 9 6 1 8) (3 5 2 4 7 9 6 1 8) (2 5 7 3 4 9 6 1 8)
(3 5 7 2 4 9 6 1 8) (2 5 7 4 3 9 6 1 8) (2 5 3 4 9 7 6 1 8)
(3 5 2 4 9 7 6 1 8) (2 5 7 3 9 4 6 1 8) (3 5 7 2 9 4 6 1 8)
(3 5 7 4 9 2 6 1 8) (2 5 8 3 4 9 6 1 7) (3 5 8 2 4 9 6 1 7)
(2 5 8 4 3 9 6 1 7) (2 5 3 4 9 8 6 1 7) (3 5 2 4 9 8 6 1 7)
(2 5 8 3 9 4 6 1 7) (3 5 8 2 9 4 6 1 7) (3 5 8 4 9 2 6 1 7)
(2 5 3 4 7 8 9 1 6) (3 5 2 4 7 8 9 1 6) (2 5 7 3 4 8 9 1 6)
(3 5 7 2 4 8 9 1 6) (2 5 7 4 3 8 9 1 6) (2 5 8 3 4 7 9 1 6)
(3 5 8 2 4 7 9 1 6) (2 5 8 4 3 7 9 1 6) (2 5 8 3 7 4 9 1 6)
(3 5 8 2 7 4 9 1 6) (3 5 8 4 7 2 9 1 6) (2 5 3 4 7 9 8 1 6)
(3 5 2 4 7 9 8 1 6) (2 5 7 3 4 9 8 1 6) (3 5 7 2 4 9 8 1 6)
(2 5 7 4 3 9 8 1 6) (2 5 3 4 9 7 8 1 6) (3 5 2 4 9 7 8 1 6)
(2 5 7 3 9 4 8 1 6) (3 5 7 2 9 4 8 1 6) (3 5 7 4 9 2 8 1 6)
(2 5 8 3 4 9 7 1 6) (3 5 8 2 4 9 7 1 6) (2 5 8 4 3 9 7 1 6)
(2 5 3 4 9 8 7 1 6) (3 5 2 4 9 8 7 1 6) (2 5 8 3 9 4 7 1 6)
(3 5 8 2 9 4 7 1 6) (3 5 8 4 9 2 7 1 6))
resolution state after removing the permutations that are not template permutations
- Code: Select all
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 38 38 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 269 5 3 169 7 19
3 269 1 289 68 7 4569 569 459
6 238 358 7 248 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
117 candidates.
the new permutation set:
- Code: Select all
1: 2: ((8 1 4 6 7 3 9 5 2) (8 1 4 6 9 3 7 5 2))
2: 2: ((9 3 6 7 1 4 2 8 5) (9 3 6 7 4 2 5 8 1))
3: 4: ((5 9 2 8 6 1 3 7 4) (5 9 3 8 6 1 2 7 4) (5 9 2 8 6 1 7 3 4)
(5 9 3 8 6 1 7 2 4))
4: 4: ((6 8 1 4 2 7 5 9 3) (6 8 1 4 2 9 5 7 3) (6 8 1 5 2 7 9 4 3)
(6 8 1 5 2 9 7 4 3))
5: 11: ((4 2 7 1 5 9 3 6 8) (4 2 7 1 5 9 6 3 8) (4 2 8 1 5 9 3 6 7)
(4 2 8 1 5 9 6 3 7) (4 2 7 1 5 8 3 9 6) (4 2 8 1 5 7 3 9 6)
(4 2 8 1 5 9 3 7 6) (4 2 7 1 5 8 9 3 6) (4 2 8 1 5 7 9 3 6)
(4 2 7 1 5 9 8 3 6) (4 2 8 1 5 9 7 3 6))
6: 14: ((2 4 9 5 3 7 1 6 8) (2 4 9 3 7 5 1 6 8) (3 4 9 2 7 5 1 6 8)
(3 4 9 5 7 2 1 6 8) (2 6 9 5 3 7 1 4 8) (2 6 9 3 7 5 1 4 8)
(3 6 9 2 7 5 1 4 8) (3 6 9 5 7 2 1 4 8) (2 4 9 5 3 8 1 6 7)
(2 6 9 5 3 8 1 4 7) (2 4 9 5 3 8 1 7 6) (2 6 9 3 4 8 1 7 5)
(3 6 9 2 4 8 1 7 5) (2 6 9 4 3 8 1 7 5))
7: 2: ((1 7 5 2 8 6 4 3 9) (1 7 5 3 8 6 4 2 9))
8: 14: ((7 4 2 9 1 5 3 6 8) (7 4 3 9 1 5 2 6 8) (7 6 2 9 1 5 3 4 8)
(7 6 3 9 1 5 2 4 8) (7 4 2 9 1 5 6 3 8) (7 6 2 9 1 4 5 3 8)
(7 4 3 9 1 5 6 2 8) (7 6 3 9 1 4 5 2 8) (7 4 2 9 1 5 8 3 6)
(7 4 3 9 1 5 8 2 6) (7 6 2 9 1 4 8 3 5) (7 6 3 9 1 4 8 2 5)
(7 4 2 9 3 5 8 6 1) (7 6 2 9 3 5 8 4 1))
9: 33: ((2 5 7 3 4 9 6 1 8) (3 5 7 2 4 9 6 1 8) (2 5 7 4 3 9 6 1 8)
(2 5 7 3 9 4 6 1 8) (3 5 7 2 9 4 6 1 8) (3 5 7 4 9 2 6 1 8)
(2 5 8 3 4 9 6 1 7) (3 5 8 2 4 9 6 1 7) (2 5 8 4 3 9 6 1 7)
(2 5 8 3 9 4 6 1 7) (3 5 8 2 9 4 6 1 7) (3 5 8 4 9 2 6 1 7)
(2 5 7 3 4 8 9 1 6) (3 5 7 2 4 8 9 1 6) (2 5 7 4 3 8 9 1 6)
(2 5 8 3 4 7 9 1 6) (3 5 8 2 4 7 9 1 6) (2 5 8 4 3 7 9 1 6)
(2 5 8 3 7 4 9 1 6) (3 5 8 2 7 4 9 1 6) (3 5 8 4 7 2 9 1 6)
(2 5 7 3 4 9 8 1 6) (3 5 7 2 4 9 8 1 6) (2 5 7 4 3 9 8 1 6)
(2 5 7 3 9 4 8 1 6) (3 5 7 2 9 4 8 1 6) (3 5 7 4 9 2 8 1 6)
(2 5 8 3 4 9 7 1 6) (3 5 8 2 4 9 7 1 6) (2 5 8 4 3 9 7 1 6)
(2 5 8 3 9 4 7 1 6) (3 5 8 2 9 4 7 1 6) (3 5 8 4 9 2 7 1 6))
the resolution path:
- Code: Select all
Initialization
#Perms: (2 3 4 8 11 23 2 20 47)
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 389 389 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 2689 5 3 169 7 19
3 2689 1 24689 2468 7 4569 569 459
6 238 358 7 248 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
125 candidates.
Trim permutations
#Perms: (2 2 4 4 11 14 2 14 33)
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 38 38 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 269 5 3 169 7 19
3 269 1 289 68 7 4569 569 459
6 238 358 7 248 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
117 candidates.
2Perms
- Code: Select all
1: 2: ((8 1 4 6 7 3 9 5 2) (8 1 4 6 9 3 7 5 2))
2: 2: ((9 3 6 7 1 4 2 8 5) (9 3 6 7 4 2 5 8 1))
3: 4: ((5 9 2 8 6 1 3 7 4) (5 9 3 8 6 1 2 7 4) (5 9 2 8 6 1 7 3 4)
(5 9 3 8 6 1 7 2 4))
4: 4: ((6 8 1 4 2 7 5 9 3) (6 8 1 4 2 9 5 7 3) (6 8 1 5 2 7 9 4 3)
(6 8 1 5 2 9 7 4 3))
5: 11: ((4 2 7 1 5 9 3 6 8) (4 2 7 1 5 9 6 3 8) (4 2 8 1 5 9 3 6 7)
(4 2 8 1 5 9 6 3 7) (4 2 7 1 5 8 3 9 6) (4 2 8 1 5 7 3 9 6)
(4 2 8 1 5 9 3 7 6) (4 2 7 1 5 8 9 3 6) (4 2 8 1 5 7 9 3 6)
(4 2 7 1 5 9 8 3 6) (4 2 8 1 5 9 7 3 6))
6: 10: ((2 4 9 5 3 7 1 6 8) (2 4 9 3 7 5 1 6 8) (3 4 9 2 7 5 1 6 8)
(3 4 9 5 7 2 1 6 8) (2 6 9 5 3 7 1 4 8) (3 6 9 5 7 2 1 4 8)
(2 4 9 5 3 8 1 6 7) (2 6 9 5 3 8 1 4 7) (2 4 9 5 3 8 1 7 6)
(2 6 9 4 3 8 1 7 5))
7: 2: ((1 7 5 2 8 6 4 3 9) (1 7 5 3 8 6 4 2 9))
8: 12: ((7 4 2 9 1 5 3 6 8) (7 4 3 9 1 5 2 6 8) (7 6 2 9 1 5 3 4 8)
(7 6 3 9 1 5 2 4 8) (7 4 2 9 1 5 6 3 8) (7 4 3 9 1 5 6 2 8)
(7 4 2 9 1 5 8 3 6) (7 4 3 9 1 5 8 2 6) (7 6 2 9 1 4 8 3 5)
(7 6 3 9 1 4 8 2 5) (7 4 2 9 3 5 8 6 1) (7 6 2 9 3 5 8 4 1))
9: 26: ((3 5 7 2 4 9 6 1 8) (2 5 7 4 3 9 6 1 8) (2 5 7 3 9 4 6 1 8)
(3 5 7 2 9 4 6 1 8) (3 5 7 4 9 2 6 1 8) (2 5 8 3 4 9 6 1 7)
(3 5 8 2 4 9 6 1 7) (2 5 8 4 3 9 6 1 7) (2 5 8 3 9 4 6 1 7)
(3 5 8 2 9 4 6 1 7) (3 5 8 4 9 2 6 1 7) (2 5 7 3 4 8 9 1 6)
(3 5 7 2 4 8 9 1 6) (2 5 7 4 3 8 9 1 6) (2 5 8 3 4 7 9 1 6)
(3 5 8 2 4 7 9 1 6) (2 5 8 4 3 7 9 1 6) (2 5 8 3 7 4 9 1 6)
(3 5 8 2 7 4 9 1 6) (3 5 8 4 7 2 9 1 6) (2 5 7 3 9 4 8 1 6)
(3 5 7 2 9 4 8 1 6) (3 5 7 4 9 2 8 1 6) (2 5 8 3 9 4 7 1 6)
(3 5 8 2 9 4 7 1 6) (3 5 8 4 9 2 7 1 6))
- Code: Select all
#Perms: (2 2 4 4 11 10 2 12 26)
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 38 38 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 29 5 3 169 7 19
3 269 1 289 68 7 4569 569 459
6 238 358 7 24 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
115 candidates.
2Perms
- Code: Select all
1: 2: ((8 1 4 6 7 3 9 5 2) (8 1 4 6 9 3 7 5 2))
2: 2: ((9 3 6 7 1 4 2 8 5) (9 3 6 7 4 2 5 8 1))
3: 4: ((5 9 2 8 6 1 3 7 4) (5 9 3 8 6 1 2 7 4) (5 9 2 8 6 1 7 3 4)
(5 9 3 8 6 1 7 2 4))
4: 4: ((6 8 1 4 2 7 5 9 3) (6 8 1 4 2 9 5 7 3) (6 8 1 5 2 7 9 4 3)
(6 8 1 5 2 9 7 4 3))
5: 11: ((4 2 7 1 5 9 3 6 8) (4 2 7 1 5 9 6 3 8) (4 2 8 1 5 9 3 6 7)
(4 2 8 1 5 9 6 3 7) (4 2 7 1 5 8 3 9 6) (4 2 8 1 5 7 3 9 6)
(4 2 8 1 5 9 3 7 6) (4 2 7 1 5 8 9 3 6) (4 2 8 1 5 7 9 3 6)
(4 2 7 1 5 9 8 3 6) (4 2 8 1 5 9 7 3 6))
6: 10: ((2 4 9 5 3 7 1 6 8) (2 4 9 3 7 5 1 6 8) (3 4 9 2 7 5 1 6 8)
(3 4 9 5 7 2 1 6 8) (2 6 9 5 3 7 1 4 8) (3 6 9 5 7 2 1 4 8)
(2 4 9 5 3 8 1 6 7) (2 6 9 5 3 8 1 4 7) (2 4 9 5 3 8 1 7 6)
(2 6 9 4 3 8 1 7 5))
7: 2: ((1 7 5 2 8 6 4 3 9) (1 7 5 3 8 6 4 2 9))
8: 12: ((7 4 2 9 1 5 3 6 8) (7 4 3 9 1 5 2 6 8) (7 6 2 9 1 5 3 4 8)
(7 6 3 9 1 5 2 4 8) (7 4 2 9 1 5 6 3 8) (7 4 3 9 1 5 6 2 8)
(7 4 2 9 1 5 8 3 6) (7 4 3 9 1 5 8 2 6) (7 6 2 9 1 4 8 3 5)
(7 6 3 9 1 4 8 2 5) (7 4 2 9 3 5 8 6 1) (7 6 2 9 3 5 8 4 1))
9: 23: ((3 5 7 2 4 9 6 1 8) (3 5 7 2 9 4 6 1 8) (3 5 7 4 9 2 6 1 8)
(2 5 8 3 4 9 6 1 7) (3 5 8 2 4 9 6 1 7) (2 5 8 4 3 9 6 1 7)
(2 5 8 3 9 4 6 1 7) (3 5 8 2 9 4 6 1 7) (3 5 8 4 9 2 6 1 7)
(2 5 7 3 4 8 9 1 6) (3 5 7 2 4 8 9 1 6) (2 5 7 4 3 8 9 1 6)
(2 5 8 3 4 7 9 1 6) (3 5 8 2 4 7 9 1 6) (2 5 8 4 3 7 9 1 6)
(3 5 8 2 7 4 9 1 6) (3 5 8 4 7 2 9 1 6) (2 5 7 3 9 4 8 1 6)
(3 5 7 2 9 4 8 1 6) (3 5 7 4 9 2 8 1 6) (2 5 8 3 9 4 7 1 6)
(3 5 8 2 9 4 7 1 6) (3 5 8 4 9 2 7 1 6))
- Code: Select all
#Perms: (2 2 4 4 11 10 2 12 23)
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 38 38 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 29 5 3 169 7 19
3 269 1 289 68 7 4569 569 459
6 238 358 7 24 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
115 candidates.
3Perms
- Code: Select all
1: 2: ((8 1 4 6 7 3 9 5 2) (8 1 4 6 9 3 7 5 2))
2: 2: ((9 3 6 7 1 4 2 8 5) (9 3 6 7 4 2 5 8 1))
3: 4: ((5 9 2 8 6 1 3 7 4) (5 9 3 8 6 1 2 7 4) (5 9 2 8 6 1 7 3 4)
(5 9 3 8 6 1 7 2 4))
4: 4: ((6 8 1 4 2 7 5 9 3) (6 8 1 4 2 9 5 7 3) (6 8 1 5 2 7 9 4 3)
(6 8 1 5 2 9 7 4 3))
5: 11: ((4 2 7 1 5 9 3 6 8) (4 2 7 1 5 9 6 3 8) (4 2 8 1 5 9 3 6 7)
(4 2 8 1 5 9 6 3 7) (4 2 7 1 5 8 3 9 6) (4 2 8 1 5 7 3 9 6)
(4 2 8 1 5 9 3 7 6) (4 2 7 1 5 8 9 3 6) (4 2 8 1 5 7 9 3 6)
(4 2 7 1 5 9 8 3 6) (4 2 8 1 5 9 7 3 6))
6: 10: ((2 4 9 5 3 7 1 6 8) (2 4 9 3 7 5 1 6 8) (3 4 9 2 7 5 1 6 8)
(3 4 9 5 7 2 1 6 8) (2 6 9 5 3 7 1 4 8) (3 6 9 5 7 2 1 4 8)
(2 4 9 5 3 8 1 6 7) (2 6 9 5 3 8 1 4 7) (2 4 9 5 3 8 1 7 6)
(2 6 9 4 3 8 1 7 5))
7: 2: ((1 7 5 2 8 6 4 3 9) (1 7 5 3 8 6 4 2 9))
8: 10: ((7 4 2 9 1 5 3 6 8) (7 4 3 9 1 5 2 6 8) (7 4 2 9 1 5 6 3 8)
(7 4 3 9 1 5 6 2 8) (7 4 2 9 1 5 8 3 6) (7 4 3 9 1 5 8 2 6)
(7 6 2 9 1 4 8 3 5) (7 6 3 9 1 4 8 2 5) (7 4 2 9 3 5 8 6 1)
(7 6 2 9 3 5 8 4 1))
9: 11: ((3 5 7 2 9 4 6 1 8) (2 5 8 3 4 9 6 1 7) (3 5 8 2 4 9 6 1 7)
(2 5 8 4 3 9 6 1 7) (3 5 8 2 9 4 6 1 7) (3 5 8 4 9 2 6 1 7)
(2 5 7 3 4 8 9 1 6) (3 5 7 2 4 8 9 1 6) (3 5 8 2 7 4 9 1 6)
(3 5 7 2 9 4 8 1 6) (3 5 8 2 9 4 7 1 6))
- Code: Select all
#Perms: (2 2 4 4 11 10 2 10 11)
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 38 38 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 29 5 3 169 7 19
3 269 1 289 68 7 456 569 459
6 238 358 7 24 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
114 candidates.
3Perms
- Code: Select all
1: 2: ((8 1 4 6 7 3 9 5 2) (8 1 4 6 9 3 7 5 2))
2: 2: ((9 3 6 7 1 4 2 8 5) (9 3 6 7 4 2 5 8 1))
3: 4: ((5 9 2 8 6 1 3 7 4) (5 9 3 8 6 1 2 7 4) (5 9 2 8 6 1 7 3 4)
(5 9 3 8 6 1 7 2 4))
4: 4: ((6 8 1 4 2 7 5 9 3) (6 8 1 4 2 9 5 7 3) (6 8 1 5 2 7 9 4 3)
(6 8 1 5 2 9 7 4 3))
5: 10: ((4 2 7 1 5 9 3 6 8) (4 2 7 1 5 9 6 3 8) (4 2 8 1 5 9 3 6 7)
(4 2 8 1 5 9 6 3 7) (4 2 7 1 5 8 3 9 6) (4 2 8 1 5 7 3 9 6)
(4 2 8 1 5 9 3 7 6) (4 2 7 1 5 8 9 3 6) (4 2 7 1 5 9 8 3 6)
(4 2 8 1 5 9 7 3 6))
6: 9: ((2 4 9 5 3 7 1 6 8) (2 4 9 3 7 5 1 6 8) (3 4 9 2 7 5 1 6 8)
(3 4 9 5 7 2 1 6 8) (2 6 9 5 3 7 1 4 8) (3 6 9 5 7 2 1 4 8)
(2 6 9 5 3 8 1 4 7) (2 4 9 5 3 8 1 7 6) (2 6 9 4 3 8 1 7 5))
7: 2: ((1 7 5 2 8 6 4 3 9) (1 7 5 3 8 6 4 2 9))
8: 10: ((7 4 2 9 1 5 3 6 8) (7 4 3 9 1 5 2 6 8) (7 4 2 9 1 5 6 3 8)
(7 4 3 9 1 5 6 2 8) (7 4 2 9 1 5 8 3 6) (7 4 3 9 1 5 8 2 6)
(7 6 2 9 1 4 8 3 5) (7 6 3 9 1 4 8 2 5) (7 4 2 9 3 5 8 6 1)
(7 6 2 9 3 5 8 4 1))
9: 11: ((3 5 7 2 9 4 6 1 8) (2 5 8 3 4 9 6 1 7) (3 5 8 2 4 9 6 1 7)
(2 5 8 4 3 9 6 1 7) (3 5 8 2 9 4 6 1 7) (3 5 8 4 9 2 6 1 7)
(2 5 7 3 4 8 9 1 6) (3 5 7 2 4 8 9 1 6) (3 5 8 2 7 4 9 1 6)
(3 5 7 2 9 4 8 1 6) (3 5 8 2 9 4 7 1 6))
- Code: Select all
#Perms: (2 2 4 4 10 9 2 10 11)
7 69 69 5 3 4 8 1 2
1 5 2 68 9 68 7 4 3
4 38 38 1 7 2 59 59 6
5 679 679 469 46 1 2 3 8
28 4 689 29 5 3 169 7 19
3 269 1 289 68 7 456 569 459
6 238 358 7 24 589 13459 589 1459
9 378 3578 468 1 568 3456 2 45
28 1 4 3 268 5689 569 5689 7
114 candidates.
4Perms
- Code: Select all
1: 2: ((8 1 4 6 7 3 9 5 2) (8 1 4 6 9 3 7 5 2))
2: 2: ((9 3 6 7 1 4 2 8 5) (9 3 6 7 4 2 5 8 1))
3: 4: ((5 9 2 8 6 1 3 7 4) (5 9 3 8 6 1 2 7 4) (5 9 2 8 6 1 7 3 4)
(5 9 3 8 6 1 7 2 4))
4: 2: ((6 8 1 4 2 7 5 9 3) (6 8 1 5 2 7 9 4 3))
5: 6: ((4 2 7 1 5 9 3 6 8) (4 2 8 1 5 9 3 6 7) (4 2 8 1 5 9 6 3 7)
(4 2 7 1 5 8 3 9 6) (4 2 7 1 5 8 9 3 6) (4 2 7 1 5 9 8 3 6))
6: 3: ((3 4 9 2 7 5 1 6 8) (3 4 9 5 7 2 1 6 8) (3 6 9 5 7 2 1 4 8))
7: 2: ((1 7 5 2 8 6 4 3 9) (1 7 5 3 8 6 4 2 9))
8: 7: ((7 4 2 9 1 5 3 6 8) (7 4 3 9 1 5 2 6 8) (7 4 2 9 1 5 6 3 8)
(7 4 2 9 1 5 8 3 6) (7 6 2 9 1 4 8 3 5) (7 4 2 9 3 5 8 6 1)
(7 6 2 9 3 5 8 4 1))
9: 6: ((3 5 7 2 9 4 6 1 8) (2 5 8 3 4 9 6 1 7) (2 5 8 4 3 9 6 1 7)
(3 5 8 2 9 4 6 1 7) (2 5 7 3 4 8 9 1 6) (3 5 7 2 9 4 8 1 6))
- Code: Select all
#Perms: (2 2 4 2 6 3 2 7 6)
7 9 6 5 3 4 8 1 2
1 5 2 6 9 8 7 4 3
4 8 3 1 7 2 5 9 6
5 6 7 9 4 1 2 3 8
8 4 9 2 5 3 6 7 1
3 2 1 8 6 7 4 5 9
6 3 5 7 2 9 1 8 4
9 7 8 4 1 6 3 2 5
2 1 4 3 8 5 9 6 7
(2 2 3 3 4)
puzzle in 4(1)-perms
its solution:
- Code: Select all
templates permutations
((8 10 22 33 45 48 61 68 74) (8 1 4 6 9 3 7 5 2)) n1
((9 12 24 34 40 47 59 71 73) (9 3 6 7 4 2 5 8 1)) n2
((5 18 21 35 42 46 56 70 76) (5 9 3 8 6 1 2 7 4)) n3
((6 17 19 32 38 52 63 67 75) (6 8 1 5 2 7 9 4 3)) n4
((4 11 25 28 41 53 57 72 78) (4 2 7 1 5 8 3 9 6)) n5
((3 13 27 29 43 50 55 69 80) (3 4 9 2 7 5 1 6 8)) n6
((1 16 23 30 44 51 58 65 81) (1 7 5 3 8 6 4 2 9)) n7
((7 15 20 36 37 49 62 66 77) (7 6 2 9 1 4 8 3 5)) n8
((2 14 26 31 39 54 60 64 79) (2 5 8 4 3 9 6 1 7)) n9