In three steps, two MSLS's and one M2-Wing (actually five Swordfishes & one M2-Wing...)
- Code: Select all
+---------------------------+------------------------+---------------------------+
| 356-247 3567 245-7 | 1235 68 9 | 35-1478 3578 1345 |
| <2345 <35 8 | 7 <235 <1235 | <13459 <359 6 |359
| >67 1 9 | 35 4 >68 | >78 2 35 | 6
+---------------------------+------------------------+---------------------------+
| >56789 2 >57 | >359 1 >358 | >35679 4 >359 | 3569
| <1459-7 <579 3 | 6 <2579 <245 | <159-7 <579 8 |579
| 569-1478 56789 145-7 | 3459 35789 35-48 | 2 35679 1359 |
+---------------------------+------------------------+---------------------------+
| 359-128 3589 125 | 14 3569-2 7 | 3569-48 35689 23459 |
| <12359 <359 6 | 8 <2359 <14 | <3459 <359 7 |359
| >35789-2 4 >257 | >2359 >3569-2 >356-2 | >35689 1 >2359 | 23569
+---------------------------+------------------------+---------------------------+
124 2 124 14
78 7 8 78
1. MSLS1 (<):
18 cell truths: r258 c125678; 18 links: 124c1, 2c5, 124c6, 14c7, 359r2, 579r5, 359r8
14 eliminations: -24 r1c1, -14 r1c7, -14 r6c1, -4 r6r6, -12 r7c1, -2 r7c5, -4 r7c7, -2 r9c156
2. MSLS2 (>):
16 cell truths:r3c167, r4c134679, r9c1345679 ;16 links: 78c1, 7c3, 9c6, 78c7, 6r3, 3569r4, 23569r9
12 eliminations: -7 r1c13, -78 r1c7, -7 r5c17, -78 r6c1, -7 r6c3, -8 r6c6, -8 r7c17
- Code: Select all
+-----------------------+-----------------------+------------------------+
| 356 3567 24 | 12 68 9 | 35 78 14 |
| 24 35 8 | 7 35 12 | 14 9 6 |
| 67 1 9 | 35 4 68 | 78 2 35 |
+-----------------------+-----------------------+------------------------+
| 56789 2 57 | 359 1 358 | 35679 4 359 |
| 14 579 3 | 6 2579 24 | 159 57 8 |
| 569 56789 14 | 3459 35789 35 | 2 3567 1359 |
+-----------------------+-----------------------+------------------------+
| 359 3589 12 | 14 3569 7 | 3569 3568 24 |
| 12 359 6 | 8 2359 14 | 3459 35 7 |
| 35789 4 57 | 2359 3569 356 | 35689 1 2359 |
+-----------------------+-----------------------+------------------------+
3. M2-Wing: (7)r5c5=(7-8)r6c5=r1c5-(8=7)r1c8 =>-7r5c8; lclste
And the usual challenge in this forum, one-step solution:
- Code: Select all
+---------------------------+--------------------------+---------------------------+
| 234567 3567 2457 | 1235 68 9 | 134578 3578 c1345 |
| 2345 35 8 | 7 235 1235 | 13459 359 6 |
| 67 1 9 | B35 4 68 | 78 2 C35 |
+---------------------------+--------------------------+---------------------------+
| 56789Y 2 57X | 359y 1 358Z | 35679Y 4 D359 |
| 14579 d579 3 | 6 Ee2579z 245 |Dd1579 Dd579 8 |
| 1456789 56789 1457 | 3459y Ff3579-8z 3458 | 2 35679 Dc1359 |
+---------------------------+--------------------------+---------------------------+
| 123589 3589 125 | 14 23569 7 | 345689 35689 c23459 |
| 12359 359 6 | 8 2359 14 | 3459 359 7 |
| 235789 4 a257W |Aa2359x 23569 2356 | 35689 1 b2359 |
+---------------------------+--------------------------+---------------------------+
AAAHP(25)r9c34 (Kraken AAALS r9c34)
(52)r9c34 - r9c9 = (241)r167c9 - (1=597)r5c278 - r5c5 = (7)r6c5
(3)r9c4 - r3c4 = r3c9 - (3=1597)b6p3459 - r5c5 = (7)r6c5
(9)r9c4 - r46c4 = (97)r56c5
(7)r9c3 - r4c3 = (7-68)r4c17 = (8)r4c6
------------------
=> -8 r6c5; lclste