- Code: Select all
*-----------*
|.2.|6..|.7.|
|..6|..7|...|
|7.9|...|.35|
|---+---+---|
|8.2|.13|...|
|..5|..6|1..|
|..1|..5|.92|
|---+---+---|
|6..|8.4|9..|
|...|.6.|...|
|.1.|...|.8.|
*-----------*
Play it online.
*-----------*
|.2.|6..|.7.|
|..6|..7|...|
|7.9|...|.35|
|---+---+---|
|8.2|.13|...|
|..5|..6|1..|
|..1|..5|.92|
|---+---+---|
|6..|8.4|9..|
|...|.6.|...|
|.1.|...|.8.|
*-----------*
*-----------*
|.2.|6..|.7.|
|..6|..7|...|
|7.9|...|.35|
|---+---+---|
|8.2|.13|...|
|..5|..6|1..|
|..1|..5|.92|
|---+---+---|
|6..|8.4|9..|
|...|.6.|...|
|.1.|...|.8.|
*-----------*
a long chain proves 8r8c3
w-wing sets 3r1c3
another chain sets 4r8c9
another chain sets 8r3c2 and 4r3c5
another chain sets 2r5c4
an xy-chain sets 9r1c9
w-wing sets 2r9c1
*--------------------------------------------------*
| 1 2 3 | 6 5 8 | 4 7 9 |
| 45 45 6 | 39 39 7 | 28 12 18 |
| 7 8 9 | 1 4 2 | 6 3 5 |
|----------------+----------------+----------------|
| 8 49 2 | 49 1 3 | 5 6 7 |
| 39 7 5 | 2 89 6 | 1 4 38 |
| 34 6 1 | 47 *78 5 |*38 9 2 |
|----------------+----------------+----------------|
| 6 35 7 | 8 2 4 | 9 15 13 |
| 59 359 8 | 37 6 1 | 237 25 4 |
| 2 1 4 | 5 3-7 9 |*37 8 6 |
*--------------------------------------------------*
an xy-wing finishes it off
*--------------------------------------------------------------*
| 145 2 38 | 6 3459 89 | 48 7 1489 |
| 145 3458 6 | 3459 3459 7 | 248 12 189 |
| 7 48 9 | 124 24 128 | 6 3 5 |
|--------------------+--------------------+--------------------|
| 8 49 2 | 49 1 3 | 5 6 7 |
| 39 7 5 | 29 289 6 | 1 4 38 |
| 34 6 1 | 47 c478 5 |d8-3 9 2 |
|--------------------+--------------------+--------------------|
| 6 35 7 | 8 23 4 | 9 125 13 |
| 259 3589 38 | 12379 6 129 | 2347 25 34 |
| 29 1 4 | 357 b357 29 |a37 8 6 |
*--------------------------------------------------------------*
*--------------------------------------------------------------*
| 1 2 3 | 6 5 8 | 4 7 9 |
|a4-5aA 45 6 | 39 39 7 | 28 12 18 |
| 7 8 9 | 124 24 12 | 6 3 5 |
|--------------------+--------------------+--------------------|
| 8 49 2 | 49 1 3 | 5 6 7 |
| 39 7 5 | 29 289 6 | 1 4 38 |
| 34bB 6 1 | 47c 478d 5 | 38C 9 2 |
|--------------------+--------------------+--------------------|
| 6 35 7 | 8 23 4 | 9 125 13 |
| 259 359 8 | 12357 6 129 | 237 25 4 |
|b259 1 4 |c2357 237e 29 | 237D 8 6 |
*--------------------------------------------------------------*
Forcing Chain Contradiction in Row 9 Digit 3:
5r2c1 - 5r9c1 = (5-3) r9c4
5r2c1 - 4r2c1 = 4r6c1 - (4=7) r6c4 - 7r6c5 = (7-3) r9c5
5r2c1 - 4r2c1 = (4-3) r6c1 = 3r6c7 - 3 r9c7.
+-----------------------+
| . 2 . | 6 . . | . 7 . |
| . . 6 | . . 7 | . . . |
| 7 . 9 | . . . | . 3 5 |
|-------+-------+-------|
| 8 . 2 | . 1 3 | . . . |
| . . 5 | . . 6 | 1 . . |
| . . 1 | . . 5 | . 9 2 |
|-------+-------+-------|
| 6 . . | 8 . 4 | 9 . . |
| . . . | . 6 . | . . . |
| . 1 . | . . . | . 8 . |
+-----------------------+
after basics
+--------------------------------------------------------------------------------+
| 145 2 348 | 6 3459 89 | 48 7 1489 |
| 145 3458 6 | 3459 3459 7 | 248 12 1489 |
| 7 48 9 | 124 24 128 | 6 3 5 |
|--------------------------+--------------------------+--------------------------|
| 8 49 2 | 49 1 3 | 5 6 7 |
| 39 7 5 | 29 289 6 | 1 4 38 |
| 34 6 1 | 47 478 5 | 38 9 2 |
|--------------------------+--------------------------+--------------------------|
| 6 35 37 | 8 2357 4 | 9 125 13 |
| 2459 34589 3478 | 123579 6 129 | 2347 25 34 |
| 2459 1 347 | 23579 23579 29 | 2347 8 6 |
+--------------------------------------------------------------------------------+
# 94 eliminations remain
(3=9)r1c367 - (9=2)r9c6 - (2=1)r7c2359 - (1=489)r1c679 => -48 r1c3
after more basics
+--------------------------------------------------------------------------------+
| 145 2 3 | 6 459 89 | 48 7 1489 |
| 145 458 6 | 3459 3459 7 | 248 12 1489 |
| 7 48 9 | 124 24 128 | 6 3 5 |
|--------------------------+--------------------------+--------------------------|
| 8 49 2 | 49 1 3 | 5 6 7 |
| 39 7 5 | 29 289 6 | 1 4 38 |
| 34 6 1 | 47 478 5 | 38 9 2 |
|--------------------------+--------------------------+--------------------------|
| 6 35 7 | 8 235 4 | 9 125 13 |
| 259 359 8 | 123579 6 129 | 2347 25 34 |
| 259 1 4 | 23579 23579 29 | 237 8 6 |
+--------------------------------------------------------------------------------+
# 78 eliminations remain
(3=4)r6c1 - (4=15)r12c1 - (5=29)r9c16
|| \
- (4=7)r6c4 - r6c5 = (7)r9c5 - (27=3)r9c7 => -3 r6c8
1r2c1 - 1r2c8 = 1r7c8 - (1=3) r7c9 - 3r5c9 = (3-9) r5c1;
1r2c1 - (1=2) r2c8 - 2r7c8 = 2r7c5 - 2r5c5 = (2-9) r5c4;
1r2c1 - (1=2) r2c8 - 2r7c8 = 2r7c5 - (2=4) r3c5 - (4=9) r1c5 - 9 r5c5; => - 1 r2c1
5r2c1 - 5r9c1 = (5-3) r9c4;
5r2c1 - 4r2c1 = 4r6c1 - (4=7) r6c4 - 7r6c5 = (7-3) r9c5;
5r2c1 - 4r2c1 = (4-3) r6c1 = 3r6c7 - 3 r9c7; => - 5 r2c1; stte
+--------------------+----------------------+----------------------+
| 1345 2 348 | 6 34589 189 | 48 7 1489 |
| 1345 3458 6 | 123459 234589 7 | 248 12 1489 |
| 7 48 9 | 124 248 128 | 6 3 5 |
+--------------------+----------------------+----------------------+
| 8 49 2 | 49 1 3 | 5 6 7 |
| 39 7 5 | 29 289 6 | 1 4 38 |
| 34 6 1 | 47 4(78) 5 | (38) 9 2 |
+--------------------+----------------------+----------------------+
| 6 35 37 | 8 35(27) 4 | 9 15(2) 13 |
| 23459 34589 3478 | 123579 6 129 | 4-2(37) 125 134 |
| 23459 1 347 | 23579 2359(7) 29 | 24(37) 8 6 |
+--------------------+----------------------+----------------------+
+----------------------+-------------------------+--------------------+
| 1345 2 348 | 6 34589 189 | 48 7 1489 |
| 1345 3458 6 | 123459 234589 7 | 248 12 1489 |
| 7 48 9 | 124 248 128 | 6 3 5 |
+----------------------+-------------------------+--------------------+
| 8 49 2 | 49 1 3 | 5 6 7 |
| (39) 7 5 | 29 289 6 | 1 4 8(3) |
| 34 6 1 | 47 478 5 | 38 9 2 |
+----------------------+-------------------------+--------------------+
| 6 35 37 | 8 357(2) 4 | 9 -1(25) (13) |
| 345(29) 34589 3478 | 13579(2) 6 19(2) | 347 1(25) 134 |
| 2345(9) 1 347 | 23579 23579 (29) | 2347 8 6 |
+----------------------+-------------------------+--------------------+
+-----------------+-------------------+---------------+
| 1 2 3 | 6 5 89 | 48 7 489 |
| 45 458 6 | 349 3489 7 | 2 1 489 |
| 7 48 9 | 124 248 128 | 6 3 5 |
+-----------------+-------------------+---------------+
| 8 4(9) 2 | 49 1 3 | 5 6 7 |
| (39) 7 5 | 29 289 6 | 1 4 8(3) |
| 34 6 1 | 47 478 5 | 38 9 2 |
+-----------------+-------------------+---------------+
| 6 35 7 | 8 23 4 | 9 25 1 |
| 2359 5-3(9) 8 | 123579 6 129 | 347 25 4(3) |
| 2359 1 4 | 23579 2379 29 | 37 8 6 |
+-----------------+-------------------+---------------+
- 5r7c8 = (5-3) r7c2 = (3-9) r8c2 ----------------------------------------------------------------------------|
- 5r7c8 = 5r7c2 - 5r89c1 = (5-4) r2c1 = (4-3) r6c1 = 3r6c7 - 3r9c7 *= 3r9c5 - (3=2) r7c5 - (2=9) r9c6 - 9r8c4 *= 9r8c1 -2 r8 c1;
- 5r7c8 = 5r7c2 - 5r9c1 = (5-3) r9c4 ------------------------------|
- 5r7c8 = 5r7c2 - 5r89c1 = (5-4) r2c1 = (4-3) r6c1 = 3r6c7 - 3r9c7 *= 3r9c5 - (3=2) r7c5 -2 r8 c46;
- 5r7c8 = 5r7c2 - 5r89c1 = (5-4) r2c1 = 4r6c1 - (4=7) r6c4 - 7r8c4 = (7-2) r8 c7;
- 5r7c8 = (5-2) r8 c8; => -12 r7c8; stte
*******************************************************************************************************
*** SudoRules 20.0.s based on CSP-Rules 2.0.s, using CLIPS 6.30-r152, config = gW-S
*******************************************************************************************************
.2.6...7...6.7....7.9....358.2.13.....5..61....1..5.926..8.49......6.....1.....8.
27 givens, 198 candidates
singles ==> r5c8 = 4, r4c8 = 6, r4c9 = 7, r4c7 = 5, r6c2 = 6, r5c2 = 7, r6c4 = 7, r7c3 = 7, r9c9 = 6, r3c7 = 6
whip[1]: b8n1{r8c6 .} ==> r8c9 ≠ 1, r8c8 ≠ 1
whip[1]: c6n8{r3 .} ==> r3c5 ≠ 8
whip[1]: b3n2{r2c8 .} ==> r2c6 ≠ 2, r2c4 ≠ 2
whip[1]: c6n8{r1 .} ==> r1c5 ≠ 8
whip[1]: b4n3{r6c1 .} ==> r9c1 ≠ 3, r8c1 ≠ 3, r2c1 ≠ 3, r1c1 ≠ 3
whip[1]: r3n1{c6 .} ==> r2c6 ≠ 1, r2c4 ≠ 1, r1c6 ≠ 1
naked-pairs-in-a-column: c6{r1 r2}{n8 n9} ==> r9c6 ≠ 9, r8c6 ≠ 9, r3c6 ≠ 8
whip[1]: c6n9{r2 .} ==> r1c5 ≠ 9, r2c4 ≠ 9
singles ==> r3c2 = 8, r8c3 = 8
whip[1]: r3n4{c5 .} ==> r2c4 ≠ 4, r1c5 ≠ 4
biv-chain[2]: b2n3{r2c4 r1c5} - c3n3{r1 r9} ==> r9c4 ≠ 3
whip[2]: r9n5{c5 c1} - r1n5{c1 .} ==> r7c5 ≠ 5
biv-chain[3]: b3n9{r2c9 r1c9} - r1c6{n9 n8} - r1c7{n8 n4} ==> r2c9 ≠ 4
biv-chain[2]: c9n4{r8 r1} - c3n4{r1 r9} ==> r9c7 ≠ 4
whip[1]: r9n4{c3 .} ==> r8c1 ≠ 4, r8c2 ≠ 4
biv-chain[3]: b7n2{r8c1 r9c1} - r9c6{n2 n7} - r8n7{c6 c7} ==> r8c7 ≠ 2
biv-chain[3]: b7n2{r9c1 r8c1} - r8c8{n2 n5} - r7n5{c8 c2} ==> r9c1 ≠ 5
whip[1]: r9n5{c5 .} ==> r8c4 ≠ 5
biv-chain[3]: b8n5{r9c4 r9c5} - c5n9{r9 r5} - r5c4{n9 n2} ==> r9c4 ≠ 2
biv-chain[3]: r6n4{c1 c5} - r6n8{c5 c7} - r1c7{n8 n4} ==> r1c1 ≠ 4
biv-chain[4]: c4n3{r2 r8} - c4n1{r8 r3} - c4n4{r3 r4} - c2n4{r4 r2} ==> r2c2 ≠ 3
singles ==> r1c3 = 3, r1c5 = 5, r1c1 = 1, r2c4 = 3, r9c3 = 4, r9c4 = 5
whip[1]: r1n4{c9 .} ==> r2c7 ≠ 4
biv-chain[3]: b8n9{r8c4 r9c5} - b8n3{r9c5 r7c5} - c2n3{r7 r8} ==> r8c2 ≠ 9
singles
123658479
546379821
789142635
892413567
375296148
461785392
657824913
238961754
914537286
JC Van Hay wrote:Hi Denis,
May I draw your attention to the fact that the puzzle is
.2.6...7...6..7...7.9....358.2.13.....5..61....1..5.926..8.49......6.....1.....8. and not
.2.6...7...6.7....7.9....358.2.13.....5..61....1..5.926..8.49......6.....1.....8.
*********************************************************************************************************
*** SudoRules 20.0.s based on CSP-Rules 2.0.s, using CLIPS 6.30-r152, config = gW-S
*********************************************************************************************************
.2.6...7...6..7...7.9....358.2.13.....5..61....1..5.926..8.49......6.....1.....8.
27 givens, 202 candidates
singles ==> r5c8 = 4, r4c8 = 6, r4c9 = 7, r4c7 = 5
hidden-single-in-a-block ==> r6c2 = 6, r5c2 = 7, r9c9 = 6, r3c7 = 6
161 candidates, 835 csp-links and 835 links.
whip[1]: b8n1{r8c6 .} ==> r8c9 ≠ 1, r8c8 ≠ 1
whip[1]: c6n8{r3 .} ==> r3c5 ≠ 8
whip[1]: b3n2{r2c8 .} ==> r2c5 ≠ 2, r2c4 ≠ 2
whip[1]: c6n8{r1 .} ==> r1c5 ≠ 8
whip[1]: b4n3{r6c1 .} ==> r9c1 ≠ 3, r8c1 ≠ 3
whip[1]: b5n8{r6c5 .} ==> r2c5 ≠ 8
whip[1]: r3n1{c4 .} ==> r2c4 ≠ 1
whip[1]: b4n3{r6c1 .} ==> r2c1 ≠ 3, r1c1 ≠ 3
whip[1]: r3n1{c6 .} ==> r1c6 ≠ 1
whip[2]: r9n5{c5 c1} - r1n5{c1 .} ==> r7c5 ≠ 5
whip[2]: r4n4{c4 c2} - r3n4{c2 .} ==> r2c4 ≠ 4
biv-chain[3]: b3n9{r2c9 r1c9} - r1c6{n9 n8} - r1c7{n8 n4} ==> r2c9 ≠ 4
whip[2]: c3n4{r8 r1} - c9n4{r1 .} ==> r8c2 ≠ 4, r8c1 ≠ 4
biv-chain[3]: c9n4{r8 r1} - r1c7{n4 n8} - c3n8{r1 r8} ==> r8c3 ≠ 4
whip[1]: r8n4{c9 .} ==> r9c7 ≠ 4
biv-chain[3]: b7n2{r9c1 r8c1} - r8c8{n2 n5} - r7n5{c8 c2} ==> r9c1 ≠ 5
whip[1]: r9n5{c5 .} ==> r8c4 ≠ 5
biv-chain[3]: r1c7{n4 n8} - r6c7{n8 n3} - r6c1{n3 n4} ==> r1c1 ≠ 4, r1c3 ≠ 4
hidden-single-in-a-column ==> r9c3 = 4
naked-pairs-in-a-row: r9{c1 c6}{n2 n9} ==> r9c7 ≠ 2, r9c5 ≠ 9, r9c5 ≠ 2, r9c4 ≠ 9, r9c4 ≠ 2
whip[3]: r1c6{n8 n9} - c5n9{r1 r5} - r5n8{c5 .} ==> r1c9 ≠ 8
biv-chain[4]: r1n3{c3 c5} - r1n5{c5 c1} - r1n1{c1 c9} - r7c9{n1 n3} ==> r7c3 ≠ 3
naked-single ==> r7c3 = 7
biv-chain[3]: r6n8{c7 c5} - c5n7{r6 r9} - r9c7{n7 n3} ==> r6c7 ≠ 3
singles
123658479
456397218
789142635
842913567
975286143
361475892
637824951
598761324
214539786
JC Van Hay wrote:How is it possible to resist the call of the cell r7c8
So, the simplest "solution" : 8 Singles; r7c8=1or2->contradiction :=> r7c8=5; ste.
r7c8 contains 3 candidates belonging to 3 bilocals (1r72c8,2r7c82,5r78c8).DonM wrote:JC, I've been taking a look at this puzzle and didn't hear r7c8 calling out to me.JC Van Hay wrote:How is it possible to resist the call of the cell r7c8
So, the simplest "solution" : 8 Singles; r7c8=1or2->contradiction :=> r7c8=5; ste.
No chain(s) needed in the phase of analysis of the puzzle, like with any kind of coloring such as GEM, RGT, ...How did you come up with r7c8=1or2->contradiction? (ie. what chains were used?).
The conséquences of r7c8=1,r7c8=2 and r7c8=5 have to be analyzed together independently of the fact that they could end up in a contradiction, solution.I ask because a) Leren referred to it as a 'single-move' solution
Once such a phase is finished, whether the puzzle is completely solved or not, a set of "chains" can be builded according to some predefined properties.and b) the alternate solution required relatively complex network moves.