February 25, 2017

Post puzzles for others to solve here.

February 25, 2017

Postby ArkieTech » Sat Feb 25, 2017 12:51 am

Code: Select all
 *-----------*
 |6.8|..2|...|
 |...|..7|2..|
 |.2.|69.|8..|
 |---+---+---|
 |3..|...|9.7|
 |94.|.6.|.21|
 |5.2|...|..4|
 |---+---+---|
 |..4|.16|.7.|
 |..5|3..|...|
 |...|7..|4.8|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 2469
Joined: 29 May 2006
Location: NW Arkansas USA

Re: February 25, 2017

Postby SteveG48 » Sat Feb 25, 2017 1:05 am

Code: Select all
 *--------------------------------------------------------------------*
 | 6      1359   8      | 4      35     2      | 7      1359   359    |
 | 4      1359   139    | 158    358    7      | 2      13569  3569   |
 | 7      2      13     | 6      9    ag15     | 8      4      35     |
 *----------------------+----------------------+----------------------|
 | 3      168    16     | 2      5-4  ag145    | 9     f58     7      |
 | 9      4      7      | 58     6      358    | 35     2      1      |
 | 5      18     2      | 19     7     g139    | 6     f38     4      |
 *----------------------+----------------------+----------------------|
 | 28     39     4      |c589    1      6      |d35     7     d2359   |
 | 28     7      5      | 3      48     89-4   | 1      69     269    |
 | 1      369    369    | 7      2    bg59     | 4     e359    8      |
 *--------------------------------------------------------------------*


(4=15)r34c6 - 5r9c6 = r7c4 - r7c79 = r9c8 - (5=38)r46c8 - (3=1459)r3469c6 => -4 r4c5,r8c6 ; stte

Or:
Code: Select all
 *--------------------------------------------------------------------*
 | 6      1359   8      | 4      35     2      | 7      1359   359    |
 | 4      1359   139    | 158    358    7      | 2      13569  3569   |
 | 7      2      13     | 6      9      15     | 8      4      35     |
 *----------------------+----------------------+----------------------|
 | 3      168    16     | 2      45     145    | 9      58     7      |
 | 9      4      7      | 58     6      358    |d35     2      1      |
 | 5     e18     2      |e19     7      13-9   | 6     e38     4      |
 *----------------------+----------------------+----------------------|
 | 28    c39     4      |b589    1      6      |c35     7      2359   |
 | 28     7      5      | 3      48    a489    | 1      69     269    |
 | 1      369    369    | 7      2     a59     | 4      359    8      |
 *--------------------------------------------------------------------*


9r89c6 = r7c4 - (9=35)r7c27 - (5=3)r5c7 - (3=189)r6c248 => -9 r6c6 ; stte
Steve
User avatar
SteveG48
2016 Supporter
 
Posts: 1827
Joined: 08 November 2013
Location: Orlando, Florida

Re: February 25, 2017

Postby Leren » Sat Feb 25, 2017 1:23 am

Code: Select all
*--------------------------------------------------------------*
| 6     1359  8      | 4     35    2      | 7     1359  359    |
| 4     1359  139    | 158   358   7      | 2     13569 3569   |
| 7     2     13     | 6     9     15     | 8     4     35     |
|--------------------+--------------------+--------------------|
| 3     168   16     | 2     45    145    | 9     58    7      |
| 9     4     7      | 58    6    d358    |c35    2     1      |
| 5     18    2      |f19    7    e139    | 6     38    4      |
|--------------------+--------------------+--------------------|
| 28   a39    4      | 58-9  1     6      |b35    7     2359   |
| 28    7     5      | 3     48    489    | 1     69    269    |
| 1     369   369    | 7     2     59     | 4     359   8      |
*--------------------------------------------------------------*

(9=3) r7c2 - r7c7 = r5c7 - r5c6 = (3-9) r6c6 = (9) r6c4 => - 9 r7c4; stte

Leren
Leren
 
Posts: 2670
Joined: 03 June 2012

Re: February 25, 2017

Postby ArkieTech » Sat Feb 25, 2017 7:29 am

Code: Select all
 *--------------------------------------------------------------------*
 | 6      1359   8      | 4     b35     2      | 7      1359   359    |
 | 4      1359   139    | 15-8  b358    7      | 2      13569  3569   |
 | 7      2      13     | 6      9     b15     | 8      4      35     |
 |----------------------+----------------------+----------------------|
 | 3      168    16     | 2     a45    a145    | 9      58     7      |
 | 9      4      7      |a58     6      358    | 35     2      1      |
 | 5      18     2      | 19     7      139    | 6      38     4      |
 |----------------------+----------------------+----------------------|
 | 28     39     4      | 589    1      6      | 35     7      2359   |
 | 28     7      5      | 3      48     489    | 1      69     269    |
 | 1      369    369    | 7      2      59     | 4      359    8      |
 *--------------------------------------------------------------------*
[(8=1)b5p234-(1=8)b2p259]-8r2c4; ste
dan
User avatar
ArkieTech
 
Posts: 2469
Joined: 29 May 2006
Location: NW Arkansas USA

Re: February 25, 2017

Postby eleven » Sat Feb 25, 2017 8:38 am

Code: Select all
 *-----------------------------------------------------*
 | 6   1359  8    |  4    35   2    | 7   1359   359   |
 | 4   1359  139  |  158  358  7    | 2   13569  3569  |
 | 7   2     13   |  6    9    15   | 8   4      35    |
 |----------------+-----------------+------------------|
 | 3   168   16   |  2   a45  a145  | 9   58     7     |
 | 9   4     7    |  8-5  6    358  | 35  2      1     |
 | 5   18    2    | a19   7    139  | 6   38     4     |
 |----------------+-----------------+------------------|
 | 28  39    4    | b589  1    6    | 35  7      2359  |
 | 28  7     5    |  3   b48   489  | 1   69     269   |
 | 1   369   369  |  7    2    59   | 4   359    8     |
 *-----------------------------------------------------*

(5=49)b5p237-(4|9=5)b8p15 => -5r5c4, stte
eleven
 
Posts: 1435
Joined: 10 February 2008

Re: February 25, 2017

Postby pjb » Sat Feb 25, 2017 11:16 am

Code: Select all
 6       1359    8      | 4      35     2      | 7      1359   359   
 4       1359    139    |e15-8   358    7      | 2      13569  3569   
 7       2       13     | 6      9      15     | 8      4      35     
------------------------+----------------------+---------------------
 3       168     16     | 2      45     145    | 9      58     7     
 9       4       7      |a58     6     b358    | 35     2      1     
 5       18      2      |d19     7     c139    | 6      38     4     
------------------------+----------------------+---------------------
 28      39      4      | 589    1      6      | 35     7      2359   
 28      7       5      | 3      48     489    | 1      69     269   
 1       369     369    | 7      2      59     | 4      359    8     

(8)r5c4 = (8-3)r5c6 = (3-9)r6c6 = (9-1)r6c4 = r2c4 => -8 r2c4; stte

Phil
pjb
2014 Supporter
 
Posts: 1553
Joined: 11 September 2011
Location: Sydney, Australia

Re: February 25, 2017

Postby Ngisa » Sat Feb 25, 2017 1:05 pm

Code: Select all
+-------------+-------------+---------------+
| 6  1359 8   | 4   35  2   | 7  1359  359  |
| 4  1359 139 | 158 358 7   | 2  13569 3569 |
| 7  2    13  | 6   9   c15  | 8  4     35   |
+-------------+-------------+---------------+
| 3  168  16  | 2   d45  c145 | 9  5-8    7    |
| 9  4    7   | 58  6   358 | 35 2     1    |
| 5  18   2   | 19  7   139 | 6  38    4    |
+-------------+-------------+---------------+
| 28 39   4   | 589 1   6   | 35 7     2359 |
| 28 7    5   | 3   48  489 | 1  69    269  |
| 1  369  369 | 7   2   b59  | 4  a359   8    |
+-------------+-------------+---------------+

(5)r9c8 = r9c6 - (5=4)r34c6 - (4=5)r4c5 => - 5 r4c8; stte

Clement
Ngisa
 
Posts: 547
Joined: 18 November 2012

Re: February 25, 2017

Postby Alex_Popov_92 » Sat Feb 25, 2017 1:53 pm

Code: Select all
*-----------------------------------------------------*
 | 6   1359  8    |  4    35   2    | 7   1359   359   |
 | 4   1359  139  |  158  358  7    | 2   13569  3569  |
 | 7   2     13   |  6    9    15   | 8   4      35    |
 |----------------+-----------------+------------------|
 | 3   168   16   |  2   45  145  | 9   58     7     |
 | 9   4     7    |  85  6    358  | 35  2      1     |
 | 5   18    2    | 19   7    139  | 6   38     4     |
 |----------------+-----------------+------------------|
 | 28  39    4    | 589  1    6    | 35  7      2359  |
 | 28  7     5    |  3   48   489  | 1   69     269   |
 | 1   369   369  |  7    2    59   | 4   359    8     |
 *-----------------------------------------------------*


First I want to apologize to all because I am not familiar with the notation, so
some solutions may be repeat. But they are all mine. Will be happy if someone
Helps me where to find some material to read on the subject. Thank you!
1. Please press the link to see the diagram
https://cloud.mail.ru/public/9Z1J/DZtBN9TRj
If we assume that r5c4 = 5 then r4c6 is left without candidates. So r5c4<>5 stte
2. Please press the link to see the diagram
https://cloud.mail.ru/public/ES4g/jEL4K16sJ
If we assume that r4c2 = 8 then we'll end up with two 8s in row 4. stte
3. Please press the link to see the diagram
https://cloud.mail.ru/public/6bNH/2DJvJ19QR
If we assume that r3c9 = 5 then we'll end up with 5s in column 9. So r3c9<>5. I see that you write 'stte' and I think my solutions leave the sudokus reduced to hidden singles (in case N1 there is one naked symbol)
4. Please press the link to see the diagram
https://cloud.mail.ru/public/EHN3/Zpcxh7dVM
If we assume that r7c4=9 we'll end up with two 9s in column 4. So r7c4<>9. stte'
5. Please press the link to see the diagram
Will upload later I hope.
Alex
Alex_Popov_92
 
Posts: 22
Joined: 22 February 2017

Re: February 25, 2017

Postby ArkieTech » Sat Feb 25, 2017 4:34 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 6      1359   8      | 4      35     2      | 7      1359   359    |
 | 4      1359   139    | 158    358    7      | 2      13569  3569   |
 | 7      2      13     | 6      9     b15     | 8      4      35     |
 |----------------------+----------------------+----------------------|
 | 3      168    16     | 2     a45    b145    | 9      58     7      |
 | 9      4      7      | 8-5    6      358    | 35     2      1      |
 | 5      18     2      | 19     7      139    | 6      38     4      |
 |----------------------+----------------------+----------------------|
 | 28     39     4      |c589    1      6      | 35     7      2359   |
 | 28     7      5      | 3     c48    c489    | 1      69     269    |
 | 1      369    369    | 7      2     b59     | 4      359    8      |
 *--------------------------------------------------------------------*
[(5=4)r4c5-(4=9)r349c6-(9=5)b8p156]-5r4c4; ste


Code: Select all
 *--------------------------------------------------------------------*
 | 6      1359   8      | 4      35     2      | 7      1359   359    |
 | 4      1359   139    |c158    358    7      | 2      13569  3569   |
 | 7      2      13     | 6      9     d15     | 8      4      35     |
 |----------------------+----------------------+----------------------|
 | 3      16-8   16     | 2      45     145    | 9     g58     7      |
 | 9      4      7      | 58     6      358    | 35     2      1      |
 | 5     a18     2      |b19     7      139    | 6      38     4      |
 |----------------------+----------------------+----------------------|
 | 28     39     4      | 589    1      6      | 35     7      2359   |
 | 28     7      5      | 3      48     489    | 1      69     269    |
 | 1      369    369    | 7      2     e59     | 4     f359    8      |
 *--------------------------------------------------------------------*
[(8=1)r6c4-r5c4=r2c4-(1=5)r3c6-r9c6=r9c8-(5=8)r4c8]-8r4c2
Last edited by ArkieTech on Sat Feb 25, 2017 5:07 pm, edited 1 time in total.
dan
User avatar
ArkieTech
 
Posts: 2469
Joined: 29 May 2006
Location: NW Arkansas USA

Re: February 25, 2017

Postby Cenoman » Sat Feb 25, 2017 5:03 pm

Code: Select all
 +-------------------+-------------------+---------------------+
 | 6    1359   8     | 4     35    2     | 7    1359    359    |
 | 4    1359   139   | 158   358   7     | 2    13569   3569   |
 | 7    2      13    | 6     9     15    | 8    4       35     |
 +-------------------+-------------------+---------------------+
 | 3    168    16    | 2     45    145   | 9    58      7      |
 | 9    4      7     | 58    6     358   | 35   2       1      |
 | 5    18     2     |g19    7    a13-9  | 6   b38      4      |
 +-------------------+-------------------+---------------------+
 | 28  e39     4     |f589   1     6     | 35   7       2359   |
 | 28   7      5     | 3     48    489   | 1    69      269    |
 | 1   d369   d369   | 7     2     59    | 4   c359     8      |
 +-------------------+-------------------+---------------------+

(3)r6c6 = r6c8 - r8c8 = r8c23 - (3=9)r7c2 - r7c4 = (9)r6c4 => -9 r6c6; stte

or with lclste finish:
Code: Select all
 +-------------------+-------------------+---------------------+
 | 6    1359   8     | 4    b35    2     | 7    1359    359    |
 | 4    1359   139   | 158  b358   7     | 2    13569   3569   |
 | 7    2      13    | 6     9    a15    | 8    4       35     |
 +-------------------+-------------------+---------------------+
 | 3    168    16    | 2    c45   d45-1  | 9    58      7      |
 | 9    4      7     | 58    6     358   | 35   2       1      |
 | 5    18     2     | 19    7     139   | 6    38      4      |
 +-------------------+-------------------+---------------------+
 | 28   39     4     | 589   1     6     | 35   7       2359   |
 | 28   7      5     | 3     48    489   | 1    69      269    |
 | 1    369    369   | 7     2     59    | 4    359     8      |
 +-------------------+-------------------+---------------------+

H wing (1=5)r3c6 - r12c5 = (5-4)r4c5 = (4)r4c6 => -1 r4c6; lclste

BTW this demonstrates +45r4c56, e.g. (5=1)r4c56 - (1=5)r3c6 - r12c5 = (5-4)r4c5 = (4)r4c6 - (1=5)r4c56 => -5 r5c4; stte

Cenoman
Cenoman
 
Posts: 204
Joined: 21 November 2016
Location: Paris, France

Re: February 25, 2017

Postby eleven » Sat Feb 25, 2017 5:52 pm

Alex_Popov_92,

welcome here.

Some notes on your solutions. First of all, please don't only post a diagram, but explain the eliminations (or placements) step by step.

First one (r5c4 = 5 then r4c6 is left without candidates).
Please explain, how this can be shown with the cells in your diagram. I cannot see it.

Second one (r4c2 = 8 then we'll end up with two 8s in row 4):
The chains in the diagram are following:
8r4c2 => no 8r4c8 => 8r6c8
8r4c2 => no 8 but 1r6c2 => no 1r6c46 => 1r4c6 => not 1 but 5r3c6 => not 5r9c6 => 5r9c8 => no 5 but 8r4c8
contradiction

In AIC these chains would look like
8r4c2-r4c8=r6c8
8r4c2-(8=1)r6c2-r6c46=r4c6-(1=5)r3c6-5r9c6=r9c8-(5=8)r4c8

It is usual here to avoid contradictions. Most common are deductions that show that one of 2 possibilities must be true, and both imply an elimination or placement. 2 chains, that lead to a contradiction like above, always can be formulated this way, in one line.
Here already a part of the second chain does the job. It shows that either 8 is in r6c2 or in r4c8 (or both):
(8=1)r6c2-r6c46=r4c6-(1=5)r3c6-5r9c6=r9c8-(5=8)r4c8 => -8r4c2,-8r6c8

Third one (r3c9 = 5 then we'll end up with 5s in column 9);
This is a net, a complicated solution for this puzzle. Written as AIC, it would look something like this (showing 5 in r3c6 or r7c9):
Code: Select all
(5=1)r3c6-r3c4=r6c4   -(1=3)r6c28-(3=5)r5c7-r7c7   = 5r7c9 => -5r3c9
                    \ -9r6c4=(9-5)r7c4=r7c79     /

Last one (r7c4=9 we'll end up with two 9s in column 4):
(9=5)r7c27-(5=8)r5c7,r6c8-(8=9)r6c24 => -9r7c4; stte

Remark: Instead of writing r5c7,r6c8 you can refer to the cells in the box with b6p48 (cells 4 and 8 of box 6).

If you have questions, please ask.

PS:
Though there have been long discussions about the AIC notation, to my knowledge none of the promoters has done the work to write down the preferred rules. Maybe best is learning by reading and doing.
To understand other's solutions here, you should be familiar with almost locked sets (ALS). Here is an old link: ALS Chains -A Tutorial ASI#3
eleven
 
Posts: 1435
Joined: 10 February 2008

Re: February 25, 2017

Postby SteveG48 » Sat Feb 25, 2017 7:38 pm

Hi, Alex. Another welcome.

Eleven has already made good comments. I'll just add a couple. As you can see, your PM is a bit ragged. It's easy to fix this by pasting it into an editor that displays using a fixed pitch font so that you can see just how it will look. If you're using Windows, Notepad is a good choice. For other operating systems I'm sure there are suitable editors. Anyway, adding a few spaces here and there will get everything to line up.

On your first solution, I do see it and I like it. However, it would be difficult to express using a single chain as it is a "networked" solution. One way to handle this is with a "Kraken" solution in which you show that all possibilities lead to the same conclusion, as proved using multiple chains. You can do this by using all of the possible candidates in a cell (the Kraken cell) or all of the instances of one candidate in a row or column (the Kraken row or column). In your solution, it would seem that r4c6 might make for a good Kraken cell solution, but showing that assigning a 1 there leads to eliminating the 5 at r5c4 leads to more problems. However, following the logic of your diagram, we see a pretty simple Kraken column solution using candidate 8 in column 4. This is how I would present your solution:

Code: Select all
 *---------------------------------------------------------------------*
 | 6      1359   8      |  4      35     2      | 7      1359   359    |
 | 4      1359   139    | a158    358    7      | 2      13569  3569   |
 | 7      2      13     |  6      9     b15     | 8      4      35     |
 *----------------------+-----------------------+----------------------|
 | 3      168    16     |  2     c45c   c145    | 9      58     7      |
 | 9      4      7      |Ad8-5d   6      358    | 35     2      1      |
 | 5      18     2      |  19     7      139    | 6      38     4      |
 *----------------------+-----------------------+----------------------|
 | 28     39     4      |  589a   1      6      | 35     7      2359   |
 | 28     7      5      |  3      48b    489    | 1      69     269    |
 | 1      369    369    |  7      2      59     | 4      359    8      |
 *---------------------------------------------------------------------*


Kraken 8c4 => -5 r5c4 ; stte

(8-1)r2c4 = r3c6 - (1=45)r4c56 - 5r5c4
(8-5)r5c4
8r7c4 - (8=4)r8c5 - (4=5)r4c5 - 5r5c4
Steve
User avatar
SteveG48
2016 Supporter
 
Posts: 1827
Joined: 08 November 2013
Location: Orlando, Florida

Re: February 25, 2017

Postby eleven » Sat Feb 25, 2017 8:56 pm

Ah, i had looked at the wrong cell :)
I saw that also the 4 in r4c5 kills all candidates of r4c6, but not with these cells.
4r4c5->-4r4c6
4r4c5->8r8c5->-8r2c5->8r2c4->(1r3c6 and 5r5c4)->-15r4c6

A PS to my ALS Chains link, just looked at the first example there, It is not really true, what Don says. It is not enough, that 3r9c2 sees the yellow 3, but all 3's of the blue ALS must see it, also the 3 in r9c8. In this case they all are in the same row, so it must see it anyway, but suppose you would have the 136 cell in say r8c2, then the deduction would be wrong.

You can read the graphics this way:
Either 3 is in the green ALS, in r7c6, or
6 and 9 must be there, particularly 9r7c3. Then there cannot be a 9 in the blue ALS, and 136 must be there, especially 3 in r9c2 or r9c8.
So 3 must be in one of r7c6, r9c2 and r9c8, and you can eliminate 3 in r9c6.

3 ways to write this as AIC:
(3=6)r7c6-(6=9)r7c3-(9=6)r9c3-(6=13)r9c28 => -3r9c6
(3=69)r7c36-(9=136)r9c28 => -3r9c6
(3=9)r7c36-(9=3)r9c238 => -3r9c6 (most common way here)
eleven
 
Posts: 1435
Joined: 10 February 2008

Re: February 25, 2017

Postby Alex_Popov_92 » Sat Feb 25, 2017 10:23 pm

Special thanks to Eleven, SteveG48 and all who wrote to me. I am aware that without proper notation two things are impossible:
1. For me to understand your solutions
2. For you to understand mine, or better said, to present my solutions in a way that is improper for others to understand, as if I am speaking different language.
Thanks a lot one more time, shall try to understand this notation from examples. You see, first steps are the most difficult.
All of you, have a nice day end evening.
Alex
Alex
Alex_Popov_92
 
Posts: 22
Joined: 22 February 2017


Return to Puzzles