February 15, 2019

Post puzzles for others to solve here.

February 15, 2019

Postby ArkieTech » Fri Feb 15, 2019 9:58 am

Code: Select all
 *-----------*
 |8..|6.4|...|
 |..7|.9.|...|
 |49.|...|..5|
 |---+---+---|
 |...|...|.53|
 |9.8|745|6.2|
 |72.|...|...|
 |---+---+---|
 |3..|...|.86|
 |...|.1.|3..|
 |...|2.3|..9|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: February 15, 2019

Postby Leren » Fri Feb 15, 2019 10:16 am

Code: Select all
*------------------------------------------------*
| 8   15    13  | 6   2357 4    | 29   379  17   |
| 2   56    7   | 35  9    18   |*4-8  36  *1-48 |
| 4   9     136 | 138 2378 1278 | 28   367  5    |
|---------------+---------------+----------------|
| 16  146   146 | 89  28   289  | 7    5    3    |
| 9   3     8   | 7   4    5    | 6    1    2    |
| 7   2     5   | 13  36   16   |*9-48 49  *8-4  |
|---------------+---------------+----------------|
| 3   147   2   | 459 57   79   | 15   8    6    |
| 56  4678  9   | 458 1    678  | 3    2    47   |
| 156 14678 146 | 2   5678 3    | 15   47   9    |
*------------------------------------------------*

UR Type 6 {48} r26c79 + Strong Links on 4 & Strong Links on 8 => - 8 r2c7, - 48 r2c9, - 48 r6c7, - 4 r6c9; stte

Leren
Leren
 
Posts: 5118
Joined: 03 June 2012

Re: February 15, 2019

Postby SpAce » Fri Feb 15, 2019 12:11 pm

Code: Select all
.-----------------.---------------------.----------------.
| 8    15     13  |   6     d2357  4    | c29   379  17  |
| 2    56     7   | d(5)-3   9     18   |  48   36   148 |
| 4    9      136 | a(3)18   2378  1278 | b28   367  5   |
:-----------------+---------------------+----------------:
| 16   146    146 |   89     28    289  |  7    5    3   |
| 9    3      8   |   7      4     5    |  6    1    2   |
| 7    2      5   | a(3)1    36    16   |  489  49   48  |
:-----------------+---------------------+----------------:
| 3    147    2   |   459    57    79   |  15   8    6   |
| 56   4678   9   |   458    1     678  |  3    2    47  |
| 156  14678  146 |   2      5678  3    |  15   47   9   |
'-----------------'---------------------'----------------'

(3=18)r63c4 - (8=2)r3c7 - r1c7 = (25)b2p24 => -3 r2c4; stte
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: February 15, 2019

Postby SpAce » Fri Feb 15, 2019 12:52 pm

Leren wrote: UR Type 6 {48} r26c79 + Strong Links on 4 & Strong Links on 8 => - 8 r2c7, - 48 r2c9, - 48 r6c7, - 4 r6c9; stte

Very cool!

Here's an alternative expression for that UR:

Code: Select all
.-----------------.-----------------.----------------------.
| 8    15     13  | 6    2357  4    |  29     379     17   |
| 2    56     7   | 35   9     18   | (48)+   36      48+1 |
| 4    9      136 | 138  2378  1278 |  2#(8)  367     5    |
:-----------------+-----------------+----------------------:
| 16   146    146 | 89   28    289  |  7      5       3    |
| 9    3      8   | 7    4     5    |  6      1       2    |
| 7    2      5   | 13   36    16   | +9-48   9#(4)  (48)+ |
:-----------------+-----------------+----------------------:
| 3    147    2   | 459  57    79   |  15     8       6    |
| 56   4678   9   | 458  1     678  |  3      2       47   |
| 156  14678  146 | 2    5678  3    |  15     47      9    |
'-----------------'-----------------'----------------------'

UR(48)r26c79 using #externals:

(48)r23c7 == (48)r6c89 => -48 r6c7; stte

Added. Using +internals is just as simple (but I prefer the symmetry of the externals):

(1)r2c9 == (948)r623c7 => -48 r2c9; stte

(9)r6c7 == (148)b3p647 => -48 r6c7; stte
Last edited by SpAce on Fri Feb 15, 2019 7:01 pm, edited 1 time in total.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: February 15, 2019

Postby SteveG48 » Fri Feb 15, 2019 5:34 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 8      15     13     | 6      2357   4      | 29     39-7  a17     |
 | 2      56     7      | 35     9     c18     | 48     36    b148    |
 | 4      9      136    | 138    2378   1278   | 28     36-7   5      |
 *----------------------+----------------------+----------------------|
 | 16     146    146    | 89     28     289    | 7      5      3      |
 | 9      3      8      | 7      4      5      | 6      1      2      |
 | 7      2      5      | 13    d36    c16     | 489    49     48     |
 *----------------------+----------------------+----------------------|
 | 3      147    2      | 459    57     79     | 15     8      6      |
 | 56     4678   9      | 458    1      678    | 3      2      47     |
 |f156    14678 f146    | 2     e5678   3      |f15    f47     9      |
 *--------------------------------------------------------------------*


(7=1)r1c9 - 1r2c9 = (16)r26c6 - 6r6c5 = r9c5 - (6=1457)r9c1378 => -7 r13c8 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: February 15, 2019

Postby SpAce » Fri Feb 15, 2019 6:25 pm

SteveG48 wrote:(7=1)r1c9 - 1r2c9 = (16)r26c6 - 6r6c5 = r9c5 - (6=1457)r9c1378 => -7 r13c8 ; stte

Hi Steve! You could (if you wished) replace that with a single node: (687)r9c258
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: February 15, 2019

Postby SteveG48 » Sat Feb 16, 2019 12:41 am

SpAce wrote:
SteveG48 wrote:(7=1)r1c9 - 1r2c9 = (16)r26c6 - 6r6c5 = r9c5 - (6=1457)r9c1378 => -7 r13c8 ; stte

Hi Steve! You could (if you wished) replace that with a single node: (687)r9c258


Pretty cool. I like it.

I also considered writing it -6r6c6 = (14567)r9c13678 and letting the reader figure out where the digits had to be. I decided to sacrifice brevity for clarity.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles