Fantastic new tool to find new 17 given sudokus

Everything about Sudoku that doesn't fit in one of the other sections

Fantastic new tool to find new 17 given sudokus

Postby JPSangin » Sun Jul 18, 2010 3:28 pm

Hi everybody

1:
You download Gridchecker1.2 by Mladen Dobrichev here : http://sites.google.com/site/dobrichev/gridchecker/gridchecker1.2_no_source.zip?attredirects=0

2:
You save one of the 5 472 730 538 essentially different solution grids in a data file.
For instance:
123456789457189236869732154218367495394528617675914823542873961781695342936241578

3:
You execute Gridchecker with the grid's file name (without extension.txt) and the number of clues.
For instance:
Gridchecker data 17

If the program found valid sudoku puzzles, go to Sudoku Identification Service to see if it is a new entry in the Royle's database.

Good luck everybody.

On your marks, go!
Last edited by JPSangin on Sun Jul 18, 2010 5:26 pm, edited 1 time in total.
JPSangin
 
Posts: 6
Joined: 10 July 2010

Re: Fantastic new tool to find new 17 given sudokus

Postby Red Ed » Sun Jul 18, 2010 3:51 pm

Let's acknowledge precedent. The new program is a go-faster replacement for Gary McGuire's checker (2006).
Red Ed
 
Posts: 633
Joined: 06 June 2005

Re: Fantastic new tool to find new 17 given sudokus

Postby coloin » Mon Jul 19, 2010 10:03 pm

Yes its good, and it works - but.............

the chances of finding a 17 is , for a random grid, perhaps is 1 in 100,000

the chances of this being new is ....... maybe 100 in 50,000 [if there are indeed 100 left unfound]

so unless we can improve the speed furthur - and maybe this can be done - it wont be that useful.

C
coloin
 
Posts: 2494
Joined: 05 May 2005
Location: Devon

Re: Fantastic new tool to find new 17 given sudokus

Postby Red Ed » Tue Jul 20, 2010 5:59 am

How long would it take to grind through all of the existing 17s' solution grids? A month or two?
Red Ed
 
Posts: 633
Joined: 06 June 2005

Re: Fantastic new tool to find new 17 given sudokus

Postby JPSangin » Tue Jul 20, 2010 7:51 am

Red Ed wrote:How long would it take to grind through all of the existing 17s' solution grids? A month or two?


Hi

Yes and I began courageously.

Could we share the entire job?

Any news about the Sudoku Identification Service?

Best regard

JPS
JPSangin
 
Posts: 6
Joined: 10 July 2010

Re: Fantastic new tool to find new 17 given sudokus

Postby JPSangin » Tue Jul 20, 2010 9:30 am

Hi

The job to share:

Different solution grids with 29 Royles = 1
Different solution grids with 20 Royles = 1
Different solution grids with 14 Royles = 1
Different solution grids with 12 Royles = 1
Different solution grids with 11 Royles = 1
Different solution grids with 9 Royles = 1
Different solution grids with 8 Royles = 4
Different solution grids with 7 Royles = 6
Different solution grids with 6 Royles = 21
Different solution grids with 5 Royles = 17
Different solution grids with 4 Royles = 83
Different solution grids with 3 Royles = 252
Different solution grids with 2 Royles = 1778
Different solution grids with 1 Royles = 44127
Total = 49151
Different solution grids = 46294

I have done from 4 Royles to 29.

29
123456789456789123798231564234675918815943276967812435379164852582397641641528397
20
123456789456789123789132564264918357875324691931675248392861475547293816618547932
14
123456789457189263689237451275613948348975612961842537534798126712364895896521374
12
123456789456789123798132546215648937864973215937215468342567891581394672679821354
11
123456789456789123798231564237615948864973215915824637342567891581392476679148352
9
123456789456789123798132546237915468864273915915648237342567891581394672679821354
8
123456789457189326689237451261374895378591642594628137742865913836912574915743268
8
123456789456789123789132546231864975864597231975321468347918652592643817618275394
8
123456789456789231789231564214895673395627418867143952531974826648512397972368145
8
123456789456789123798231564264975318875143296931628457349812675582367941617594832
7
123456789457189236689732154245698317361275948978341562594817623736524891812963475
7
123456789456789132789213456271594863638127945945638217397845621514962378862371594
7
123456789457189236869732154218367495394528617675914823542873961781695342936241578
7
123456789457189236698327154269715843745863921831942567376298415584671392912534678
7
123456789456789132789231546247193658368574291591862374635928417812347965974615823
7
123456789457189263689273451276815394395764128814392576538647912741928635962531847
6
123456789456789132789132546267593418391847625845621973532974861678215394914368257
6
123456789456789132789231546295814673674392815831675924367928451548163297912547368
6
123456789456789123789132564267314958531968247894527316342675891675891432918243675
6
123456789456789123798213564274835916381692475965147238537928641619374852842561397
6
123456789456789132789213456214895673538627941967341825392174568671538294845962317
6
123456789456789132789231546278314695395678214641592378534967821862143957917825463
6
123456789456789123798231645284597361517643892639128457365914278872365914941872536
6
123456789457189236689273154278935641394617528516842973761324895842591367935768412
6
123456789456789132789123546275348961638291475941567328392675814567814293814932657
6
123456789457189236689732514264973851718524963935618427341295678576841392892367145
6
123456789456789123798213564267345918385691247914827356572968431649132875831574692
6
123456789456789123789132465215967348347518296698324517561843972874295631932671854
6
123456789456789231789231564215347896378695412964128357537914628692873145841562973
6
123456789456789123789132465217895346394627851568341297642513978835974612971268534
6
123456789456789123798231645249168357365972418871345296514693872682517934937824561
6
123456789456789123798213564245361978379548612681972345562194837837625491914837256
6
123456789456789132789123546231867954675941328948532671367294815592318467814675293
6
123456789457189326689732541236945178874613295915827463342598617568271934791364852
6
123456789456789123798231564261548397845973612937162845314697258582314976679825431
6
123456789456789123798213564247598631539167842861324975385641297672935418914872356
6
123456789456789132789132564234875691598361427671294358362917845847523916915648273
5
123456789456789123798213564284195376365827491917364258539671842642538917871942635
5
123456789457189236698723145261395874374861952589274361736942518842517693915638427
5
123456789456789123789132546234597618568314972971268435397621854612845397845973261
5
123456789456789123798132465234567918581394276967821354379615842612948537845273691
5
123456789456789132789231546261594378394178625875623491547862913638917254912345867
5
123456789456789132789213654248537916531692478697148523362975841874361295915824367
5
123456789456789123789132546247913658318265974695847312572698431861374295934521867
5
123456789456789123897231645215867934374592861968314572539628417641973258782145396
5
123456789457189236689327145265871493378594621941632857594768312712943568836215974
5
123456789457189236689273145294531678318647952576892314741965823862314597935728461
5
123456789456789123798132546235697814617348952984521637369215478572864391841973265
5
123456789456789123798213564261547938374928615985631247537862491619374852842195376
5
123456789456789123798231564269315847347892651815674932572948316631527498984163275
5
123456789457189263689372451241967538765813942938524617396748125572631894814295376
5
123456789456789123798213654217935468635148972849672315371824596562397841984561237
5
123456789456789123798132564281597436579643812634821957342915678865274391917368245
5
123456789456789123789123465238567941514932678697841352375618294861294537942375816
4
123456789456789132789213645248971563617345928935628471362597814571834296894162357
4
123456789456789132789213654238164975541972863697538421374695218862341597915827346
4
123456789457189236689732541234917658765248913891365472312674895546893127978521364
4
123456789456789132789123546264598371315247968897631425571362894648975213932814657
4
123456789456789123789231564214975836368142957597368412671593248842617395935824671
4
123456789457189263689732415218347956376895124594261378765924831841673592932518647
4
123456789456789123789123465291834576348675291675912834537261948814397652962548317
4
123456789457189236896732154219874563684523917735691428342918675561347892978265341
4
123456789456789132789132564261593478375248916948617253592861347634975821817324695
4
123456789456789132789132564264598371537214896891367425342975618675821943918643257
4
123456789457189263698372415265841397719263854834795126346918572582637941971524638
4
123456789456789123789132564215374896647598231938261457372915648561843972894627315
4
123456789456789123798231645237814956569372418814965237345197862671528394982643571
4
123456789456789123789132546248513697631978254975264831397625418564891372812347965
4
123456789456789123798231645267598314534612978981347562375864291649125837812973456
4
123456789456789132789213645247891563395627814861534297514962378672348951938175426
4
123456789456789123798132564241673958687945312935218476362597841519824637874361295
4
123456789456789132789231546265194378394578621871623495547862913638917254912345867
4
123456789456789123789132546218967435364518297975324861592873614637241958841695372
4
123456789457189236986237154264975318519823647738641592395764821642318975871592463
4
123456789456789132789213654238671945641395827975824361367142598512968473894537216
4
123456789456789123798231564271945836369128457584367912617892345842573691935614278
4
123456789456789123798213654237591846584637291961842375375968412642175938819324567
4
123456789456789132789231546264815973597362814831974625375628491648193257912547368
4
123456789457189236869372154248697513671523498935841627386214975592768341714935862
4
123456789457189263698372154279514836384267591516893472731648925842935617965721348
4
123456789457189236869372154248691573671523498935847621382764915596218347714935862
4
123456789456789132789132564271345698348691275965827413514968327692573841837214956
4
123456789456789132789213645267894513831527496945631278372168954594372861618945327
4
123456789456789123798132564247615938539248671861973245372594816685321497914867352
4
123456789457189236869273154238915647516748923794632518342597861671824395985361472
4
123456789457189236698327415235964871761538942849712563314275698576893124982641357
4
123456789457189623698732514235691478786245391941873265379568142514927836862314957
4
123456789456789123798231645274895316365127498981643572512964837649378251837512964
4
123456789456789123798132564237841695569273841814695237372918456645327918981564372
4
123456789457189263689372415264831597591647832738925641342598176815763924976214358
4
123456789457189263689723154261594837598237416734618925312975648876342591945861372
4
123456789457189236689372541238695417591734862764218953315947628876521394942863175
4
123456789456789123798231645237594861841367952965812374314628597582973416679145238
4
123456789456789123798231564271843695864195237935627418317568942582914376649372851
4
123456789456789132789231546295674318374812695861395274512943867648127953937568421
4
123456789456789132789132546245378961637591824891624357312945678568217493974863215
4
123456789456789132789132564235971846874625391961348257312894675597263418648517923
4
123456789456789123789132564247615938361948257598327416675891342832574691914263875
4
123456789457189263689732154278395641531648972946271538395827416714963825862514397
4
123456789456789132789213654291634578378591246564827913612345897835972461947168325
4
123456789456789123798231564219673845384925617567148932632897451875314296941562378
4
123456789457189236689732145214593867735618492896274513378945621542361978961827354
4
123456789456789132789123546268395471315247968974618253532871694691534827847962315
4
123456789457189236689732415238547961761398524945621378392815647516274893874963152
4
123456789456789123897231645219645378365897412748123596571968234682374951934512867
4
123456789456789132789231546267194853318572964945368217572843691631925478894617325
4
123456789457189263896372145274963518381745692569218374645837921712594836938621457
4
123456789456789132789213654241368597697521843835974261318697425574832916962145378
4
123456789456789132789213456261597348574328691938164527397841265642975813815632974
4
123456789456789132789231546267843915315697428894512367542378691671924853938165274
4
123456789456789123798213564261948357587361492934527816319675248645832971872194635
4
123456789456789132789132564234561897875923416961874253348295671592617348617348925
4
123456789457189236986372154214935867365718492879624315532897641691243578748561923
4
123456789456789132789231546261874953397615824845923671518362497634597218972148365
4
123456789456789123798132564261543897347298615985617342532864971679321458814975236
4
123456789456789123897231645235864971681975432974123856348692517519347268762518394
4
123456789456789132789132564271348695864975213935621478318564927592817346647293851
4
123456789457189236698237415281745963379618524546392178735961842862574391914823657
4
123456789456789123798231564231697458584312697967548312379125846612874935845963271
4
123456789456789132789213654234967518517842963968135247395628471671394825842571396
4
123456789457189263698237415285391647731645928946872351372514896569728134814963572
4
123456789456789132789213654214568973378924516695137248547392861832671495961845327
4
123456789456789132789231564268973451375124896914865273592647318647318925831592647
4
123456789456789123798132546239841657675923814841675392362598471517264938984317265
4
123456789457189236689732541241598673375624918968317452594863127732941865816275394
4
123456789456789123798132564264817395581923476937645218349278651612594837875361942
4
123456789456789123789132564268514397394267851517893642631948275842375916975621438
4
123456789456789132789213645267894513831572496945631278372168954594327861618945327
4
123456789457189236698372145281794653746531928935268471372915864569847312814623597
4
123456789456789123798231645264573918815962437937814562349627851571348296682195374
4
123456789456789123798231645249617358637528914815943267364175892571892436982364571
4
123456789456789123789132546235968417847321695961574832374895261512643978698217354
4
123456789457189263698327415276815394345962871981734652564298137739641528812573946
4
123456789456789132789231546265394817397518264841627953574862391618973425932145678
4
123456789456789132789231546218975463345612978967843215591364827672198354834527691
4
123456789456789132789132564275963841618274953934518627347895216561327498892641375
4
123456789456789123897231645239145867645827931781693452362978514578314296914562378


Ask for the list in a private message.
JPSangin
 
Posts: 6
Joined: 10 July 2010

Re: Fantastic new tool to find new 17 given sudokus

Postby Red Ed » Tue Jul 20, 2010 4:18 pm

Any new 17s from that exercise?
Red Ed
 
Posts: 633
Joined: 06 June 2005

Re: Fantastic new tool to find new 17 given sudokus

Postby ronk » Tue Jul 20, 2010 7:03 pm

Red Ed wrote:Any new 17s from that exercise?

JPSangin, is this really the object of this exercise? To test all the solution grids for known 17s to see if any 17s were missed?

If so, I'll be surprised if even one new 17 can be found.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Fantastic new tool to find new 17 given sudokus

Postby Red Ed » Tue Jul 20, 2010 7:17 pm

ronk wrote:If so, I'll be surprised if even one new 17 can be found.

Me too, but it would be nice to know for sure that the set of 17s found so far was closed w.r.t. taking subsets of their solution grids.
Red Ed
 
Posts: 633
Joined: 06 June 2005

Re: Fantastic new tool to find new 17 given sudokus

Postby ronk » Wed Jul 21, 2010 6:40 pm

JPSangin wrote:The job to share:

Different solution grids with 29 Royles = 1
Different solution grids with 20 Royles = 1
Different solution grids with 14 Royles = 1
Different solution grids with 12 Royles = 1
Different solution grids with 11 Royles = 1
Different solution grids with 9 Royles = 1
Different solution grids with 8 Royles = 4
Different solution grids with 7 Royles = 6
Different solution grids with 6 Royles = 21
Different solution grids with 5 Royles = 17
Different solution grids with 4 Royles = 83
Different solution grids with 3 Royles = 252
Different solution grids with 2 Royles = 1778
Different solution grids with 1 Royles = 44127
Total = 49151
Different solution grids = 46294

I have done from 4 Royles to 29.

I've spare CPU cycles for the near term. One grid took 10 minutes, so 2000 would presumably take 2 weeks. PM 2000 to me, preferably 2000 with only one 17. If all goes well, I can likely take another batch of 2000 after that.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Fantastic new tool to find new 17 given sudokus

Postby daj95376 » Wed Jul 21, 2010 10:23 pm

I downloaded the program and passed a datafile with 1000 solutions to it as directed above. It took awhile for it to perform some preliminary work, but it seemed to settle down and start processing them. I didn't know what to expect from the diagnostics, but when it reached "Checked=51,Found=0,ETTF=7.xxxh" I decided to abort the program. There were no entries in the output file.

Hmmm!!!
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Fantastic new tool to find new 17 given sudokus

Postby ronk » Wed Jul 21, 2010 11:28 pm

daj95376 wrote:I downloaded the program and passed a datafile with 1000 solutions to it as directed above. It took awhile for it to perform some preliminary work, but it seemed to settle down and start processing them. I didn't know what to expect from the diagnostics, but when it reached "Checked=51,Found=0,ETTF=7.xxxh" I decided to abort the program. There were no entries in the output file.

I don't know much about this program either, but ...
1) assuming you had a file named 'data.txt', by that time you should at least have had a 'data.unav.txt' file
2) the ETTF (I think) means 'Estimated Time To Finish' ... and there were over 7 hours to go. Ouch!
3) left to run, AFAIK gridchecker would have only processed the first solution grid.

The first solution grid completed in about 10 minutes. The next were about 20 minutes and then 2 hours! Shows the hazard of extrapolating from a sample size of one. :(

[edit: Now the 4th indicates in excess of 4 hours. I'll test again .... making the 4th the same as the first ... and see if the 10 minutes is repeatable.]
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Fantastic new tool to find new 17 given sudokus

Postby daj95376 » Thu Jul 22, 2010 12:42 am

I did preliminary timing estimates on the second and third puzzles in my input file. They both had ETTF in the five hour range. So much for this endeavour!
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Grids to test

Postby JPSangin » Thu Jul 22, 2010 1:02 am

Hi

Sometimes Gridchecker find puzzles in minutes, sometimes in many hours. It depends on the number of clues and also the number of unavoidable sets.

Here are some grids fast to give a result. All with 17 clues.

123456789457189236869732154218367495394528617675914823542873961781695342936241578
123456789456789132789231546261594378394178625875623491547862913638917254912345867
123456789456789123897231645219645378365897412748123596571968234682374951934512867
123456789456789123789123465241935876398674512567812394672348951835291647914567238

Just to test

JPS
Last edited by JPSangin on Mon Jul 26, 2010 4:57 pm, edited 1 time in total.
JPSangin
 
Posts: 6
Joined: 10 July 2010

Re: Fantastic new tool to find new 17 given sudokus

Postby ronk-Moderator » Sat Jul 24, 2010 8:51 pm

I moved the last four posts to GridChecker, an exhaustive puzzle enumerator starting here. They had little to do with searching for missing 17s within solution grids based on Gordon Royle's collection.
ronk-Moderator
 


Return to General