Extreme ?

Post puzzles for others to solve here.

Extreme ?

Postby Yogi » Wed Dec 04, 2024 9:48 pm

43.7..........2..79..3..61..7.9...4...........1...6.2..42..3..55..1..........4.86

Code: Select all
+---+---+---+
|43.|7..|...|
|...|..2|..7|
|9..|3..|61.|
+---+---+---+
|.7.|9..|.4.|
|...|...|...|
|.1.|..6|.2.|
+---+---+---+
|.42|..3|..5|
|5..|1..|...|
|...|..4|.86|
+---+---+---+

The only SE that I can get to work says this is 12.9
User avatar
Yogi
2017 Supporter
 
Posts: 352
Joined: 05 December 2015
Location: New Zealand

Re: Extreme ?

Postby yzfwsf » Wed Dec 04, 2024 10:12 pm

skfr: ER/EP/ED=9.0/1.2/1.2 506.6 ms
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: Extreme ?

Postby denis_berthier » Thu Dec 05, 2024 3:53 am

.
Very far from extreme:
SER = 9.1 ("the" original SER)
T&E-depth = 1
gW = W = 9
.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: Extreme ?

Postby Yogi » Fri Dec 06, 2024 6:37 am

Thanx

ER - Anyone attempt a solution ?
User avatar
Yogi
2017 Supporter
 
Posts: 352
Joined: 05 December 2015
Location: New Zealand

Re: Extreme ?

Postby denis_berthier » Fri Dec 06, 2024 7:08 am

Yogi wrote: Anyone attempt a solution ?

Simplest-first solution in W9 (nothing noticeable):

Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------------+-------------------------+-------------------------+
   ! 4       3       1568    ! 7       1689    189     ! 289     59      289     !
   ! 168     568     1568    ! 468     14689   2       ! 3489    359     7       !
   ! 9       2       7       ! 3       458     58      ! 6       1       48      !
   +-------------------------+-------------------------+-------------------------+
   ! 2368    7       3568    ! 9       12358   158     ! 358     4       138     !
   ! 238     58      34589   ! 2458    1234578 1578    ! 35789   6       1389    !
   ! 38      1       34589   ! 458     34578   6       ! 35789   2       389     !
   +-------------------------+-------------------------+-------------------------+
   ! 1678    4       2       ! 68      6789    3       ! 19      79      5       !
   ! 5       68      368     ! 1       26789   789     ! 2349    379     2349    !
   ! 137     9       13      ! 25      257     4       ! 123     8       6       !
   +-------------------------+-------------------------+-------------------------+
181 candidates.


hidden-pairs-in-a-column: c3{n4 n9}{r5 r6} ==> r6c3≠8, r6c3≠5, r6c3≠3, r5c3≠8, r5c3≠5, r5c3≠3
finned-x-wing-in-columns: n6{c4 c2}{r2 r7} ==> r7c1≠6
whip[1]: r7n6{c5 .} ==> r8c5≠6
z-chain[4]: c7n4{r8 r2} - r2n3{c7 c8} - c8n9{r2 r1} - c6n9{r1 .} ==> r8c7≠9
t-whip[4]: r3n8{c6 c9} - b3n4{r3c9 r2c7} - r2n3{c7 c8} - r2n9{c8 .} ==> r2c5≠8
biv-chain[5]: r9n5{c5 c4} - c4n2{r9 r5} - b4n2{r5c1 r4c1} - b4n6{r4c1 r4c3} - b4n5{r4c3 r5c2} ==> r5c5≠5
z-chain[5]: r9n7{c1 c5} - r9n5{c5 c4} - c4n2{r9 r5} - r5c1{n2 n8} - r6c1{n8 .} ==> r9c1≠3
whip[1]: b7n3{r9c3 .} ==> r4c3≠3
z-chain[5]: b4n5{r5c2 r4c3} - r4n6{c3 c1} - c1n2{r4 r5} - c4n2{r5 r9} - c4n5{r9 .} ==> r5c6≠5
t-whip[6]: c9n3{r6 r8} - r8n4{c9 c7} - r8n2{c7 c5} - r9c4{n2 n5} - r9c5{n5 n7} - r6n7{c5 .} ==> r6c7≠3
whip[6]: r8n4{c9 c7} - b9n2{r8c7 r9c7} - r9n3{c7 c3} - r9n1{c3 c1} - c1n7{r9 r7} - r7c8{n7 .} ==> r8c9≠9
z-chain[4]: c9n9{r6 r1} - c6n9{r1 r8} - c6n7{r8 r5} - c7n7{r5 .} ==> r6c7≠9
whip[6]: r4n2{c5 c1} - c1n6{r4 r2} - c4n6{r2 r7} - r7n8{c4 c1} - c1n1{r7 r9} - c1n7{r9 .} ==> r4c5≠8
whip[8]: r1n6{c5 c3} - c1n6{r2 r4} - r4n2{c1 c5} - r5n2{c5 c1} - c1n3{r5 r6} - c5n3{r6 r5} - c5n1{r5 r2} - b1n1{r2c1 .} ==> r1c5≠8
whip[8]: r1n6{c5 c3} - c1n6{r2 r4} - r4n2{c1 c5} - r5n2{c5 c1} - c1n3{r5 r6} - c5n3{r6 r5} - c5n1{r5 r2} - b1n1{r2c1 .} ==> r1c5≠9
whip[9]: c7n4{r8 r2} - c9n4{r3 r8} - r8n2{c9 c5} - r4n2{c5 c1} - c1n6{r4 r2} - r2c4{n6 n8} - r2c2{n8 n5} - c3n5{r2 r4} - r4n6{c3 .} ==> r8c7≠3
t-whip[9]: r3n8{c6 c9} - c9n4{r3 r8} - c7n4{r8 r2} - r2n3{c7 c8} - r8n3{c8 c3} - r8n6{c3 c2} - b7n8{r8c2 r7c1} - r7c4{n8 n6} - r2c4{n6 .} ==> r1c6≠8
whip[8]: r6n7{c5 c7} - r6n5{c7 c4} - c6n5{r4 r3} - r3n8{c6 c9} - r1n8{c9 c3} - r1n6{c3 c5} - r1n1{c5 c6} - r4c6{n1 .} ==> r6c5≠8
whip[8]: r5c2{n5 n8} - r6c1{n8 n3} - r5c1{n3 n2} - c4n2{r5 r9} - c4n5{r9 r6} - r5c4{n5 n4} - r6c5{n4 n7} - c7n7{r6 .} ==> r5c7≠5
t-whip[7]: c9n3{r6 r8} - r8n4{c9 c7} - b9n2{r8c7 r9c7} - r9c4{n2 n5} - r9c5{n5 n7} - r6n7{c5 c7} - c7n5{r6 .} ==> r4c7≠3
whip[6]: r5n5{c2 c4} - r6n5{c4 c7} - r4c7{n5 n8} - r4c6{n8 n1} - r5c6{n1 n7} - c7n7{r5 .} ==> r5c2≠8
naked-single ==> r5c2=5
biv-chain[3]: r2c2{n8 n6} - c1n6{r2 r4} - r4c3{n6 n8} ==> r1c3≠8, r2c3≠8
whip[1]: r1n8{c9 .} ==> r2c7≠8, r3c9≠8
singles ==> r3c9=4, r8c7=4
whip[1]: r3n8{c6 .} ==> r2c4≠8
hidden-pairs-in-a-block: b3{n2 n8}{r1c7 r1c9} ==> r1c9≠9, r1c7≠9
whip[1]: c9n9{r6 .} ==> r5c7≠9
biv-chain[4]: c3n8{r8 r4} - r4c7{n8 n5} - c6n5{r4 r3} - r3n8{c6 c5} ==> r8c5≠8
z-chain[4]: r2n5{c3 c8} - c8n3{r2 r8} - r8c3{n3 n8} - r4c3{n8 .} ==> r2c3≠6
z-chain[4]: r4c3{n8 n6} - r1n6{c3 c5} - r7n6{c5 c4} - c4n8{r7 .} ==> r4c6≠8
biv-chain[3]: c9n1{r5 r4} - r4c6{n1 n5} - r4c7{n5 n8} ==> r5c9≠8
biv-chain[4]: b6n9{r6c9 r5c9} - c9n1{r5 r4} - r4c6{n1 n5} - r4c7{n5 n8} ==> r6c9≠8
biv-chain[5]: c6n7{r8 r5} - b6n7{r5c7 r6c7} - c7n5{r6 r4} - r4c6{n5 n1} - r1c6{n1 n9} ==> r8c6≠9
singles ==> r1c6=9, r1c8=5, r2c3=5
whip[1]: c6n1{r5 .} ==> r4c5≠1, r5c5≠1
t-whip[3]: r8c6{n7 n8} - r7n8{c5 c1} - c1n7{r7 .} ==> r9c5≠7
hidden-single-in-a-row ==> r9c1=7
naked-pairs-in-a-block: b8{r9c4 r9c5}{n2 n5} ==> r8c5≠2
singles ==> r8c9=2, r1c9=8, r1c7=2
whip[1]: c9n3{r6 .} ==> r5c7≠3
biv-chain[4]: b2n4{r2c4 r2c5} - r2n1{c5 c1} - r7c1{n1 n8} - r7c4{n8 n6} ==> r2c4≠6
naked-single ==> r2c4=4
hidden-single-in-a-column ==> r7c4=6
whip[1]: c4n8{r6 .} ==> r5c5≠8, r5c6≠8
z-chain[3]: r6c4{n8 n5} - c7n5{r6 r4} - r4n8{c7 .} ==> r6c1≠8
stte
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: Extreme ?

Postby Mauriès Robert » Thu Dec 12, 2024 9:44 am

Hi Yogi,

Here is a resolution of the same type as that of Denis Berthier, but with antitracks of length at most equal to 10.

(-3r56c1) => 8r6c1->2r5c1->2r9c4->5r9c5->7r9c1->... => -3r9c1 => -3r4c3

(-6r7c4) => 6r2c4->6r1c3->6r8c2->... => -6r7c1, -6r8c5

(-24r8c7) => 4r2c7->4r8c9->2r8c5->2r4c1->6r2c1->6r4c3->5r5c2->8r2c2->... r2c4 empty => -39r8c7

(-8r3c56) => 8r3c9->4r8c9->4r2c7->3r2c8->3r8c3->6r8c2->8r7c1->6r7c4->8r2c4->... => -8p235B2

(-3r6c1) => 8r6c1->5r5c2->6r4c3->6r2c1->8r2c2->4r2c4->5r6c4->5r9c5->8r3c5->8r7c4->... 6c4 empty => r6c1=3

(-8r3c56) => 8r3c9->29r1c79->9r8c6->7r5c6->8r4c6->45r6c45->9r6c3->... empty r6c9 => -8r2c4 => r3c9=4, r8c7=4

(-9r1c56) => 9r8c6->7r5c6->7r6c7->5r6c45->5r3c6->8r3c5->8r7c4->6r2c4->... r1c45=1 ? =>-9r1c789 => r1c8=5, -8r2c7, -8r1c3

(-8r1c9) => 2r1c9->2r8c5->2r5c4->2r4c1->6r2c1->6r7c4->8r6c4->... => -8r6c9 => r6c9=9 + 2 slots => Hidden triplet 234B5 => - 578p245B5 => r1c6=9

(-3r45c9) => 3r8c9->2r8c5->2r5c4->8r5c1->68r7c45->... 9c5 empty => -3r8c9 => r8c9=2 + 3 placements

(-8r5c1) => 2r5c1->2r4c5->3r5c5->4r5c4->6r2c4->8r7c4->... => -8r7c1 => r7c1=1 + 11 placements

(-6r2c1) => 8r2c1->2r5c1->2r4c5->3r5c5->4r5c4->6r2c4->... => -6r2c235 => r8c2=6, r8c3=8

(-8r5c1) => 2r5c1->4r5c4->6r2c4->8r7c4->5r6c4->5r5c2->8r2c2->... r2c1 empty => r5c1=8 and end
Mauriès Robert
 
Posts: 603
Joined: 07 November 2019
Location: France


Return to Puzzles