Hi,
Just wondering what would be the next step and which technique to use.
10x
Yogi wrote:You need to show us the puzzle at the point you have arrived at . . .
. . 8 . . . . . 3
. . 4 . . 9 . . .
. 2 . 3 7 . 5 . .
. 1 9 2 . . . . 4
. . . 5 . . 2 . .
. . . . 3 . . . 6
. 6 . . . 3 7 . .
7 9 . . . 8 . . .
8 . . 7 . . . 1 .
urhegyi wrote:
- Code: Select all
. . 8 . . . . . 3
. . 4 . . 9 . . .
. 2 . 3 7 . 5 . .
. 1 9 2 . . . . 4
. . . 5 . . 2 . .
. . . . 3 . . . 6
. 6 . . . 3 7 . .
7 9 . . . 8 . . .
8 . . 7 . . . 1 .
Locked Candidates 1 (Pointing): 8 in b2 => r2c7<>8,r2c8<>8,r2c9<>8
Locked Candidates 1 (Pointing): 7 in b1 => r5c2<>7,r6c2<>7
Locked Candidates 2 (Claiming): 8 in c7 => r4c8<>8,r5c8<>8,r6c8<>8,r5c9<>8
Locked Candidates 1 (Pointing): 5 in b6 => r7c8<>5,r8c8<>5
Hidden Pair: 25 in r1c6,r9c6 => r1c6<>146,r9c6<>46
Finned X-Wing:6c36\r35 fr4c6 => r5c5<>6
AIC Type 2: (1=6)r2c7 - r9c7 = r9c5 - (6=8)r4c5 - r2c5 = 8r2c4 => r2c4<>1
Grouped W-Wing: 68 in r2c4,r4c5 connected by 6b8 => r2c5,r6c4<>8
Hidden Single: 8 in b2 => r2c4=8
2-String Kite: 6 in r1c4,r9c7 connected by b8p48 => r1c7 <> 6
AIC Type 1: (1=6)r2c7 - r9c7 = r9c5 - (6=8)r4c5 - r4c7 = (8-1)r6c7 = 1r5c9 => r23c9,r6c7<>1
Hidden Single: 1 in b6 => r5c9=1
Hidden Single: 7 in c9 => r2c9=7
Hidden Single: 7 in b1 => r1c2=7
Locked Candidates 1 (Pointing): 2 in b3 => r7c8<>2,r8c8<>2
2-String Kite: 9 in r5c8,r7c4 connected by b5p57 => r7c8 <> 9
Discontinuous Nice Loop: 8r4c5 = r4c7 - (8=9)r6c7 - r6c4 = (9-8)r5c5 = 8r4c5 => r4c5=8
Hidden Single: 8 in b6 => r6c7=8
Hidden Single: 8 in b4 => r5c2=8
Naked Single: r4c7=3
Hidden Single: 3 in b9 => r8c8=3
Locked Candidates 1 (Pointing): 6 in b5 => r3c6<>6
Locked Candidates 1 (Pointing): 6 in b9 => r2c7<>6
Naked Single: r2c7=1
Locked Candidates 1 (Pointing): 9 in b6 => r1c8<>9,r3c8<>9
XYZ-Wing: 356 in r2c1 r2c2 r4c1 => r1c1 <> 5
Locked Candidates 2 (Claiming): 5 in r1 => r2c5<>5
Naked Pair: in r2c5,r2c8 => r2c1<>6,
WXYZ-Wing: 3456 in r245c1,r6c2,Pivot Cell Is r5c1 => r6c1<>5
Uniqueness Test 7: 26 in r12c58; 2*biCell + 1*conjugate pairs(2c8) => r1c5 <> 6
Uniqueness Test 7: 25 in r19c56; 2*biCell + 1*conjugate pairs(5r1) => r9c5 <> 2
AIC Type 1: (6=5)r4c1 - (5=3)r2c1 - r5c1 = (3-6)r5c3 = 6r3c3 => r13c1,r5c3<>6
Hidden Single: 6 in b1 => r3c3=6
Locked Candidates 1 (Pointing): 1 in b1 => r7c1<>1
Naked Pair: in r3c8,r7c8 => r1c8<>4,
Uniqueness Test 1: 26 in r12c58 => r1c5 <> 26
Discontinuous Nice Loop: (6=5)r4c1 - r4c8 = (5-9)r6c8 = (9-1)r6c4 = r6c6 - (1=4)r3c6 - r3c8 = r7c8 - r7c1 = (4-3)r9c2 = r9c3 - r5c3 = (3-6)r5c1 = 6r4c1 => r4c1=6
Hidden Single: 6 in b5 => r5c6=6
Hidden Single: 5 in r4 => r4c8=5
Full House: r4c6=7
2-String Kite: 4 in r5c5,r9c2 connected by b4p48 => r9c5 <> 4
Dual Empty Rectangle : 4 in b3 connected by r9,c6 => r6c2 <> 4
Hidden Single: 4 in c2 => r9c2=4
Hidden Single: 3 in b7 => r9c3=3
Hidden Single: 3 in b4 => r5c1=3
Hidden Single: 4 in b4 => r6c1=4
Hidden Single: 4 in b5 => r5c5=4
Hidden Single: 9 in b5 => r6c4=9
Full House: r6c6=1
Hidden Single: 9 in b6 => r5c8=9
Full House: r5c3=7
Full House: r6c8=7
Hidden Single: 2 in b4 => r6c3=2
Full House: r6c2=5
Full House: r2c2=3
Hidden Single: 2 in b7 => r7c1=2
Hidden Single: 5 in b1 => r2c1=5
Hidden Single: 4 in c6 => r3c6=4
Hidden Single: 4 in b3 => r1c7=4
Hidden Single: 4 in b9 => r7c8=4
Hidden Single: 8 in b9 => r7c9=8
Hidden Single: 4 in b8 => r8c4=4
Hidden Single: 8 in b3 => r3c8=8
Hidden Single: 9 in b3 => r3c9=9
Full House: r3c1=1
Full House: r1c1=9
Hidden Single: 9 in b9 => r9c7=9
Full House: r8c7=6
Hidden Single: 6 in b8 => r9c5=6
Hidden Single: 9 in b8 => r7c5=9
Hidden Single: 6 in b2 => r1c4=6
Full House: r7c4=1
Full House: r7c3=5
Full House: r8c3=1
Hidden Single: 6 in b3 => r2c8=6
Full House: r2c5=2
Full House: r1c8=2
Hidden Single: 2 in b8 => r9c6=2
Full House: r9c9=5
Full House: r1c6=5
Full House: r1c5=1
Full House: r8c5=5
Full House: r8c9=2
+---+---+---+
|..8|...|..3|
|..4|..9|...|
|.2.|37.|5..|
+---+---+---+
|.19|2..|..4|
|...|5..|2..|
|...|.3.|..6|
+---+---+---+
|.6.|..3|7..|
|79.|..8|...|
|8..|7..|.1.|
+---+---+---+
+----------------------+----------------------+----------------------+
| 1569 57 8 | 146 12456 25 | 1469 24679 3 |
| 1356 357 4 | 168 12568 9 |a16 267 127 |
| 169 2 16 | 3 7 146 | 5 4689 189 |
+----------------------+----------------------+----------------------+
| 356 1 9 | 2 d68 67 |e38 357 4 |
| 346 348 367 | 5 14689 1467 | 2 379 179 |
| 245 458 257 | 1489 3 147 |f89-1 579 6 |
+----------------------+----------------------+----------------------+
| 1245 6 125 | 149 12459 3 | 7 2489 2589 |
| 7 9 1235 | 146 12456 8 | 346 2346 25 |
| 8 345 235 | 7 c24569 25 |b3469 1 259 |
+----------------------+----------------------+----------------------+
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 1569 57 8 ! 146 12456 12456 ! 1469 24679 3 !
! 1356 357 4 ! 168 12568 9 ! 16 267 127 !
! 169 2 16 ! 3 7 146 ! 5 4689 189 !
+-------------------+-------------------+-------------------+
! 356 1 9 ! 2 68 67 ! 38 357 4 !
! 346 348 367 ! 5 14689 1467 ! 2 379 179 !
! 245 458 257 ! 1489 3 147 ! 189 579 6 !
+-------------------+-------------------+-------------------+
! 1245 6 125 ! 149 12459 3 ! 7 2489 2589 !
! 7 9 1235 ! 146 12456 8 ! 346 2346 25 !
! 8 345 235 ! 7 24569 2456 ! 3469 1 259 !
+-------------------+-------------------+-------------------+
190 candidates.
hidden-pairs-in-a-column: c6{n2 n5}{r1 r9} ==> r9c6≠6, r9c6≠4, r1c6≠6, r1c6≠4, r1c6≠1
finned-x-wing-in-columns: n6{c3 c6}{r3 r5} ==> r5c5≠6
biv-chain[3]: r4c7{n3 n8} - r4c5{n8 n6} - r9n6{c5 c7} ==> r9c7≠3
whip[1]: r9n3{c3 .} ==> r8c3≠3
whip[3]: r2n8{c4 c5} - r4c5{n8 n6} - b8n6{r8c5 .} ==> r2c4≠6
finned-x-wing-in-columns: n6{c4 c8}{r8 r1} ==> r1c7≠6
biv-chain[4]: r2c7{n1 n6} - r9n6{c7 c5} - r4c5{n6 n8} - b6n8{r4c7 r6c7} ==> r6c7≠1
singles ==> r5c9=1, r2c9=7, r1c2=7
whip[1]: c9n2{r9 .} ==> r7c8≠2, r8c8≠2
finned-x-wing-in-rows: n9{r5 r9}{c5 c8} ==> r7c8≠9
biv-chain[3]: r5n8{c2 c5} - r5n9{c5 c8} - r6c7{n9 n8} ==> r6c2≠8
hidden-single-in-a-block ==> r5c2=8
biv-chain[3]: r6c2{n5 n4} - b7n4{r9c2 r7c1} - c1n2{r7 r6} ==> r6c1≠5
z-chain[3]: b7n4{r7c1 r9c2} - r6c2{n4 n5} - b1n5{r2c2 .} ==> r7c1≠5
biv-chain[4]: b5n8{r4c5 r6c4} - r2c4{n8 n1} - r2c7{n1 n6} - r9n6{c7 c5} ==> r4c5≠6
singles ==> r4c5=8, r4c7=3, r8c8=3, r2c4=8, r6c7=8
whip[1]: b6n9{r6c8 .} ==> r1c8≠9, r3c8≠9
whip[1]: b9n6{r9c7 .} ==> r2c7≠6
naked-single ==> r2c7=1
whip[1]: b5n6{r5c6 .} ==> r3c6≠6
biv-chain[3]: b4n3{r5c1 r5c3} - b7n3{r9c3 r9c2} - c2n4{r9 r6} ==> r5c1≠4
whip[1]: r5n4{c6 .} ==> r6c4≠4, r6c6≠4
hidden-pairs-in-a-column: c1{n2 n4}{r6 r7} ==> r7c1≠1
whip[1]: b7n1{r8c3 .} ==> r3c3≠1
naked-single ==> r3c3=6
naked-pairs-in-a-block: b1{r2c1 r2c2}{n3 n5} ==> r1c1≠5
whip[1]: r1n5{c6 .} ==> r2c5≠5
naked-pairs-in-a-column: c8{r3 r7}{n4 n8} ==> r1c8≠4
z-chain[3]: c4n4{r8 r1} - c4n6{r1 r8} - r8c7{n6 .} ==> r8c5≠4
biv-chain[4]: r1c1{n1 n9} - r1c7{n9 n4} - r8n4{c7 c4} - c4n6{r8 r1} ==> r1c4≠1
biv-chain[4]: r8n4{c4 c7} - b3n4{r1c7 r3c8} - r3c6{n4 n1} - r6n1{c6 c4} ==> r8c4≠1
naked-pairs-in-a-column: c4{r1 r8}{n4 n6} ==> r7c4≠4
naked-pairs-in-a-row: r8{c4 c7}{n4 n6} ==> r8c5≠6
z-chain[3]: r5c5{n9 n4} - b8n4{r7c5 r8c4} - b8n6{r8c4 .} ==> r9c5≠9
whip[1]: r9n9{c9 .} ==> r7c9≠9
biv-chain[4]: r9n9{c9 c7} - r9n6{c7 c5} - r2c5{n6 n2} - c6n2{r1 r9} ==> r9c9≠2
biv-chain[4]: r4n7{c6 c8} - b6n5{r4c8 r6c8} - r6n9{c8 c4} - r6n1{c4 c6} ==> r6c6≠7
stte
dr-shaw wrote:Thank you very much for the input.
Since this entire code is new to me.
I saw you've written you used something called a chain.
I'm not familiar with this technique.
Can you refer me to a video or explanation with screenshots so I will understand better how these chains work?
dr-shaw wrote:Can you refer me to a video or explanation with screenshots so I will understand better how these chains work?