.
I forgot to give my solution
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 23789 23469 234678 ! 45789 45789 789 ! 6789 789 1 !
! 789 69 1 ! 789 2 3 ! 6789 4 5 !
! 789 49 5 ! 1 4789 6 ! 3 2 789 !
+----------------------+----------------------+----------------------+
! 15 1456 46 ! 456789 3 2 ! 14789 1789 789 !
! 123 7 2346 ! 4689 489 189 ! 1489 5 2389 !
! 1235 8 9 ! 457 457 17 ! 147 6 237 !
+----------------------+----------------------+----------------------+
! 135789 1359 378 ! 789 6 4 ! 2 13789 789 !
! 4 139 378 ! 2 789 5 ! 1789 13789 6 !
! 6 29 278 ! 3 1 789 ! 5 789 4 !
+----------------------+----------------------+----------------------+
182 candidates.
- Code: Select all
hidden-pairs-in-a-row: r6{n2 n3}{c1 c9} ==> r6c9≠7, r6c1≠5, r6c1≠1
whip[1]: r6n5{c5 .} ==> r4c4≠5
hidden-pairs-in-a-column: c9{n2 n3}{r5 r6} ==> r5c9≠9, r5c9≠8
There's a tridagon with 3 guardians, but one will disappear before it is used.
- Code: Select all
Trid-OR3-relation for digits 7, 8 and 9 in blocks:
b2, with cells (marked #): r1c6, r2c4, r3c5
b3, with cells (marked #): r1c8, r2c7, r3c9
b8, with cells (marked #): r9c6, r7c4, r8c5
b9, with cells (marked #): r9c8, r7c9, r8c7
with 3 guardians (in cells marked @): n6r2c7 n4r3c5 n1r8c7
+----------------------+----------------------+----------------------+
! 23789 23469 234678 ! 45789 45789 789# ! 6789 789# 1 !
! 789 69 1 ! 789# 2 3 ! 6789#@ 4 5 !
! 789 49 5 ! 1 4789#@ 6 ! 3 2 789# !
+----------------------+----------------------+----------------------+
! 15 1456 46 ! 46789 3 2 ! 14789 1789 789 !
! 123 7 2346 ! 4689 489 189 ! 1489 5 23 !
! 23 8 9 ! 457 457 17 ! 147 6 23 !
+----------------------+----------------------+----------------------+
! 135789 1359 378 ! 789# 6 4 ! 2 13789 789# !
! 4 139 378 ! 2 789# 5 ! 1789#@ 13789 6 !
! 6 29 278 ! 3 1 789# ! 5 789# 4 !
+----------------------+----------------------+----------------------+
z-chain[4]: r4c1{n1 n5} - c2n5{r4 r7} - c2n1{r7 r8} - c7n1{r8 .} ==> r4c8≠1
whip[1]: c8n1{r8 .} ==> r8c7≠1
At least one candidate of a previous Trid-OR3-relation between candidates n6r2c7 n4r3c5 n1r8c7 has just been eliminated.
There remains a Trid-OR2-relation between candidates: n6r2c7 n4r3c5
hidden-pairs-in-a-block: b9{n1 n3}{r7c8 r8c8} ==> r8c8≠9, r8c8≠8, r8c8≠7, r7c8≠9, r7c8≠8, r7c8≠7
Trid-OR2-whip[3]: r3c2{n9 n4} - OR2{{n4r3c5 | n6r2c7}} - r2c2{n6 .} ==> r7c2≠9
Trid-OR2-whip[3]: r3c2{n9 n4} - OR2{{n4r3c5 | n6r2c7}} - r2c2{n6 .} ==> r8c2≠9naked-pairs-in-a-row: r8{c2 c8}{n1 n3} ==> r8c3≠3
z-chain[3]: b7n9{r7c1 r9c2} - c2n2{r9 r1} - c2n3{r1 .} ==> r7c1≠3
Trid-OR2-whip[3]: r3c2{n9 n4} - OR2{{n4r3c5 | n6r2c7}} - r2c2{n6 .} ==> r9c2≠9The end is easy:
- Code: Select all
singles ==> r9c2=2, r7c1=9, r7c2=5, r4c1=5, r5c1=1, r8c2=1, r8c8=3, r7c8=1, r7c3=3, r6c1=3, r6c9=2, r5c9=3, r5c3=2, r1c1=2, r5c4=6, r1c2=3, r4c7=1, r6c6=1
whip[1]: c1n7{r3 .} ==> r1c3≠7
whip[1]: c1n8{r3 .} ==> r1c3≠8
whip[1]: b4n4{r4c3 .} ==> r4c4≠4
hidden-pairs-in-a-column: c4{n4 n5}{r1 r6} ==> r6c4≠7, r1c4≠9, r1c4≠8, r1c4≠7
finned-x-wing-in-columns: n9{c4 c9}{r4 r2} ==> r2c7≠9
finned-x-wing-in-columns: n9{c9 c4}{r4 r3} ==> r3c5≠9
swordfish-in-columns: n9{c2 c4 c9}{r3 r2 r4} ==> r4c8≠9
biv-chain[2]: r8n9{c5 c7} - c8n9{r9 r1} ==> r1c5≠9
biv-chain[3]: b2n9{r1c6 r2c4} - r2c2{n9 n6} - b3n6{r2c7 r1c7} ==> r1c7≠9
x-wing-in-columns: n9{c5 c7}{r5 r8} ==> r5c6≠9
naked-single ==> r5c6=8
biv-chain[3]: r1c6{n7 n9} - c4n9{r2 r4} - b5n7{r4c4 r6c5} ==> r1c5≠7, r3c5≠7
hidden-pairs-in-a-block: b2{n7 n9}{r1c6 r2c4} ==> r2c4≠8
singles ==> r7c4=8, r7c9=7, r3c1=7, r2c1=8
finned-x-wing-in-rows: n7{r2 r4}{c4 c7} ==> r6c7≠7
stte
One thing I wanted to show with this example is, even though it has a low SER, without using uniqueness or tridagon (or another impossible pattern), the puzzle would be quite hard to solve. Unfortunately, all the other solutions use uniqueness.
Two more points to notice are,
this puzzle is in T&E(3) ; and, if we exclude uniqueness from SER, then it's rating becomes 11.7 instead of 7.1.