Here is my ugly solution, which includes one questionable UR step. I hope a UR expert will tell me if I did it right.
- Code: Select all
*-----------*
|...|.53|.4.|
|...|.6.|...|
|4..|...|.29|
|---+---+---|
|8..|...|..1|
|93.|...|...|
|7..|...|..8|
|---+---+---|
|67.|...|.35|
|3..|2..|...|
|...|.1.|7..|
*-----------*
After basic moves, including removing the 2 in r5c3 on colors, we get:
- Code: Select all
*-----------------------------------------------------------------------------*
| 12 268 2678 | 9 5 3 | 168 4 67 |
| 15 589 5789 | 4 6 2 | 158 1578 3 |
| 4 56 3 | 17 8 17 | 56 2 9 |
|-------------------------+-------------------------+-------------------------|
| 8 2456 2456 | 567 2349* 479* | 234569 5679 1 |
| 9 3 1456 | 1567 24 8 | 2456 567 2467 |
| 7 12456 12456 | 156 2349* 149* | 234569 569 8 |
|-------------------------+-------------------------+-------------------------|
| 6 7 12 | 8 49* 49* | 12 3 5 |
| 3 14589 14589 | 2 7 56 | 14689 1689 46 |
| 25 24589 24589 | 3 1 56 | 7 689 246 |
*-----------------------------------------------------------------------------*
I'm not sure if this is valid or not, but the URs in r7c56 and r6c56/r4c56 tell me that there has to be a 4 or 9 in box 5 outside of r6c56/r4c56. The only possibility is to set r5c5=4.
From there we advance to:
- Code: Select all
*--------------------------------------------------------------------*
| 12 268 2678 | 9 5 3 | 168 4 67 |
| 15 589 5789 | 4 6 2 | 158 157 3 |
| 4 56 3 | 17 8 17 | 56 2 9 |
|----------------------+----------------------+----------------------|
| 8 2456 2456 | 567 23 79 | 34 5679 1 |
| 9 3 156 | 1567 4 8 | 256 567 267 |
| 7 12456 12456 | 156 23 19 | 34 569 8 |
|----------------------+----------------------+----------------------|
| 6 7 12 | 8 9 4 | 12 3 5 |
| 3 1458 1458 | 2 7 56 | 9 168 46 |
| 25 24589 24589 | 3 1 56 | 7 68 246 |
*--------------------------------------------------------------------*
There is a simple nice loop that sets r1c9=7:
[r1c9]=7=[r2c8]=1=[r8c8]-1-[r7c7]-2-[r5c7]=2=[r5c9]=7=[r1c9] => r1c9=7
Simple steps later:
- Code: Select all
*--------------------------------------------------------------------*
| 12 268 268 | 9 5 3 | 16 4 7 |
| 15 9 7 | 4 6 2 | 8 15 3 |
| 4 56 3 | 17 8 17 | 56 2 9 |
|----------------------+----------------------+----------------------|
| 8 2456 2456 | 567 23 79 | 34 5679 1 |
| 9 3 156 | 1567 4 8 | 25 567 26 |
| 7 12456 12456 | 156 23 19 | 34 569 8 |
|----------------------+----------------------+----------------------|
| 6 7 12 | 8 9 4 | 12 3 5 |
| 3 1458 1458 | 2 7 56 | 9 168 46 |
| 25 2458 9 | 3 1 56 | 7 68 246 |
*--------------------------------------------------------------------*
From there the XY chain:
5-(r5c7)-2-(r7c7)-1-(r7c3)-2-(r9c1)-5-(r2c1)-1-(r2c8)-5
eliminates the 5s in r3c7, r4c8, r5c8, and r6c8, which solves the puzzle.
In nice loop notation:
[r3c7]-5-[r5c7]-2-[r7c7]-1-[r7c3]-2-[r9c1]-5-[r2c1]-1-[r2c8]-5-[r3c7] => r3c7<>5
[r456c8]-5-[r5c7]-2-[r7c7]-1-[r7c3]-2-[r9c1]-5-[r2c1]-1-[r2c8]-5-[r456c8] => r456c8<>5