- Code: Select all
. . . | . . . | . . .
. . . | 2-9 . 129 | . 1-2 .
. . . | . . . | . . .
-------------+---------------+-------------
. . . | . . . | . . .
. . . | . . 1-4 | . . .
. . . | 4-9 1-9 . | . . .
-------------+---------------+-------------
. . . | . . . | . . .
. . . | . . . | . . .
. . . | . . . | . . .
1) r5c6 = 1 or 4
2) if r5c6 = 4, then r6c4=9, then r2c4=2, then r2c8=1
3) if r5c6 = 1, then r2c6=(2-9) forming a twin with r2c4=(2-9), then r2c8=1
This proves r2c8=1. After some easy steps, the grid looks like this:
- Code: Select all
1-3 8 6 | 5 4 1-3 | 9 2 7
5 4 7 | 2-9 6 2-9 | 8 1 3
. 3-9 123 | 7 1-3 8 | 4 5 6
-------------+---------------+-------------
8 2 9 | 3 5 7 | 6 4 1
7 6 1-4 | 8 2 1-4 | 5 3 9
134 5 134 | 4-9 1-9 6 | 7 8 2
-------------+---------------+-------------
3-9 7 8 | 1 3-9 5 | 2 6 4
6 3-9 2-4 | 249 8 . | 1 7 5
2-4 1 5 | 6 7 2-4 | 3 9 8
And now it is possible to see this:
- Code: Select all
1-3 . . | . . 1-3 | . . .
. . . | . . . | . . .
. . . | . 1-3 . | . . .
-------------+---------------+-------------
. . . | . . . | . . .
. . . | . . . | . . .
. . . | . 1-9 . | . . .
-------------+---------------+-------------
3-9 . . | . 3-9 . | . . .
. . . | . . . | . . .
. . . | . . . | . . .
1) r1c1 = 1 or 3
2) if r1c1 = 1 => r1c6=3 => r3c5=1 => r6c5=9
3) if r1c1 = 3 => r7c1=9 => r7c5=3 => r3c5=1 => r6c5=9
This proves r6c5 is 9. The rest follows easily.