Easy?

Post puzzles for others to solve here.

Easy?

Postby m_b_metcalf » Wed Jul 26, 2023 7:54 am

Code: Select all
 . . . . . . . . .
 . . 1 . 2 . 3 . .
 . 4 . 5 . 1 . 6 .
 . . 2 7 . . 8 . .
 . 3 . . . 2 . 9 .
 . . 7 . 8 . 2 . .
 . 1 . 9 . 4 . 3 .
 . . 3 . 7 . 5 . .
 . . . . . . . . .

...........1.2.3...4.5.1.6...27..8...3...2.9...7.8.2...1.9.4.3...3.7.5...........
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13637
Joined: 15 May 2006
Location: Berlin

Re: Easy?

Postby Hajime » Wed Jul 26, 2023 8:08 am

No, not that easy. Especially at the start
Code: Select all
Skyscraper (2)r3c1=r3c9-r7c9=r7c1 => (-2)r1c1 (-2)r8c1 (-2)r9c1
Turbot Crane (2)r1c2=r3c1-r7c1=r7c9 => (-2)r1c9
Skyscraper (2)r3c9=r3c1-r7c1=r7c9 => (-2)r8c9 (-2)r9c9
Swordfish (7)r357c179 => (-7)r1c1 (-7)r1c7 (-7)r1c9 (-7)r2c1 (-7)r2c9 (-7)r9c1 (-7)r9c7 (-7)r9c9 |
Swordfish (8)r357c139 => (-8)r1c1 (-8)r1c3 (-8)r1c9 (-8)r2c1 (-8)r2c9 (-8)r8c1 (-8)r8c9 (-8)r9c1 (-8)r9c3 (-8)r9c9
Naked/Hidden Pairs,Triplets,Quads  | NSept (1345689)c1r1245689 => (-389)r3c1 (-568)r7c1 | NSext (134569)c1r124689 => (-1456)r5c1 | N_Oct (12456789)c1r23456789 => (-569)r1c1 | NQuad (2789)r3c1379 => (-9)r3c5 | 1 (8)b4e4 => (-8)r5c3 | 1 (3)c5r3 => (-3)r1c5 (-3)r4c5 (-3)r9c5 | NQuin (14569)r9c13579 => (-569)r9c2 (-16)r9c4 (-56)r9c6 (-14)r9c8 | NSept (1345679)c9r1245689 => (-79)r3c9 (-67)r7c9 | NSext (134569)c9r124689 => (-1456)r5c9
r1c1=3 Naked Single  <-- the first cell solved
basics tte

NSept means: Naked Septet = Hidden Pair
2 Swordfishes on r357c139 for digits 7 and 8, whaooh.
User avatar
Hajime
 
Posts: 1385
Joined: 20 April 2018
Location: Fryslân

Re: Easy?

Postby P.O. » Wed Jul 26, 2023 8:25 am

i wouldn't say easy but not that difficult
Code: Select all
.  .  .  .  .  .  .  .  .
.  .  1  .  2  .  3  .  .
.  4  .  5  .  1  .  6  .
.  .  2  7  .  .  8  .  .
.  3  .  .  .  2  .  9  .
.  .  7  .  8  .  2  .  .
.  1  .  9  .  4  .  3  .
.  .  3  .  7  .  5  .  .
.  .  .  .  .  .  .  .  .

...........1.2.3...4.5.1.6...27..8...3...2.9...7.8.2...1.9.4.3...3.7.5...........

2356789  256789   5689     3468     3469     36789    1479     124578   1245789           
56789    56789    1        468      2        6789     3        4578     45789             
23789    4        89       5        39       1        79       6        2789             
14569    569      2        7        134569   3569     8        145      13456             
14568    3        4568     146      1456     2        1467     9        14567             
14569    569      7        1346     8        3569     2        145      13456             
25678    1        568      9        56       4        67       3        2678             
24689    2689     3        1268     7        68       5        1248     124689           
2456789  256789   45689    12368    1356     3568     14679    12478    1246789       

Hidden Text: Show
Code: Select all
X-WING ROW: n2 (3 7) (1 9)
(((1 1 1) (2 3 5 6 7 8 9)) ((1 9 3) (1 2 4 5 7 8 9)) ((8 1 7) (2 4 6 8 9))
 ((8 9 9) (1 2 4 6 8 9)) ((9 1 7) (2 4 5 6 7 8 9)) ((9 9 9) (1 2 4 6 7 8 9)))

SWORDFISH ROW: n7 (3 5 7) (1 7 9)
(((1 1 1) (3 5 6 7 8 9)) ((1 7 3) (1 4 7 9)) ((1 9 3) (1 4 5 7 8 9))
 ((2 1 1) (5 6 7 8 9)) ((2 9 3) (4 5 7 8 9)) ((9 1 7) (4 5 6 7 8 9))
 ((9 7 9) (1 4 6 7 9)) ((9 9 9) (1 4 6 7 8 9)))

SIXTE COL: ((2 1 1) (5 6 8 9)) ((4 1 4) (1 4 5 6 9)) ((5 1 4) (1 4 5 6 8)) ((6 1 4) (1 4 5 6 9)) ((8 1 7) (4 6 8 9)) ((9 1 7) (4 5 6 8 9))
(((1 1 1) (3 5 6 8 9)) ((3 1 1) (2 3 7 8 9)) ((7 1 7) (2 5 6 7 8)))

( n3r1c1   n3r3c5 )

X-WING ROW: n8 (3 7) (3 9)
(((1 3 1) (5 6 8 9)) ((1 9 3) (1 4 5 8 9)) ((2 9 3) (4 5 8 9))
 ((5 3 4) (4 5 6 8)) ((8 9 9) (1 4 6 8 9)) ((9 3 7) (4 5 6 8 9))
 ((9 9 9) (1 4 6 8 9)))

( n8r5c1 )

QUINTE ROW: ((9 1 7) (4 5 6 9)) ((9 3 7) (4 5 6 9)) ((9 5 8) (1 5 6)) ((9 7 9) (1 4 6 9)) ((9 9 9) (1 4 6 9))
(((9 2 7) (2 5 6 7 8 9)) ((9 4 8) (1 2 3 6 8)) ((9 6 8) (3 5 6 8))
 ((9 8 9) (1 2 4 7 8)))

intersection:
((((5 0) (7 5 8) (5 6)) ((5 0) (9 5 8) (1 5 6))))

SIXTE COL: ((1 9 3) (1 4 5 9)) ((2 9 3) (4 5 9)) ((4 9 6) (1 3 4 5 6)) ((6 9 6) (1 3 4 5 6)) ((8 9 9) (1 4 6 9)) ((9 9 9) (1 4 6 9))
(((3 9 3) (2 7 8 9)) ((5 9 6) (1 4 5 6 7)) ((7 9 9) (2 6 7 8)))

( n7r5c9   n5r5c3   n4r9c3   n5r9c1   n5r7c5 )

intersections:
((((9 0) (9 7 9) (1 6 9)) ((9 0) (9 9 9) (1 6 9)))
 (((9 0) (1 3 1) (6 9)) ((9 0) (3 3 1) (8 9)))
 ( n3r6c6   n1r4c8   n5r4c6   n4r4c1   n6r6c9   n5r6c8   n9r6c2
   n1r6c1   n3r4c9   n6r4c2   n6r1c4   n4r6c4   n1r5c4   n9r4c5
   n4r1c5   n6r5c5   n9r2c6   n8r1c8   n7r1c6   n8r9c6   n3r9c4
   n4r8c8   n4r5c7   n7r2c8   n8r2c4   n5r1c9   n1r1c7   n2r1c2
   n1r8c9   n2r8c4   n4r2c9   n5r2c2   n9r9c9   n6r9c7   n1r9c5
   n7r9c2   n6r8c6   n8r8c2   n2r7c1   n9r3c7   n7r3c1   n2r9c8
   n8r7c9   n7r7c7   n6r7c3   n2r3c9   n8r3c3   n9r1c3   n9r8c1
   n6r2c1 ))

3 2 9   6 4 7   1 8 5
6 5 1   8 2 9   3 7 4
7 4 8   5 3 1   9 6 2
4 6 2   7 9 5   8 1 3
8 3 5   1 6 2   4 9 7
1 9 7   4 8 3   2 5 6
2 1 6   9 5 4   7 3 8
9 8 3   2 7 6   5 4 1
5 7 4   3 1 8   6 2 9

SOLVED WITH BASICS.
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Easy?

Postby StrmCkr » Tue Aug 01, 2023 7:07 pm

easy? load puzzle: check
do nothing else: check
Code: Select all
+------------------------------+----------------------+-----------------------------+
| 3569-278   -569(278)  569-8  | 3468   3469    36789 | 149-7   -145(278)  1459-278 |
| 569-78     569(78)    1      | 468    2       6789  | 3       45(78)     459-78   |
| -39(27-8)  4          9(8)   | 5      39      1     | 9(7)    6          -9(28-7) |
+------------------------------+----------------------+-----------------------------+
| 14569      569        2      | 7      134569  3569  | 8       145        13456    |
| 14568      3          456-8  | 146    1456    2     | 146-7   9          14567    |
| 14569      569        7      | 1346   8       3569  | 2       145        13456    |
+------------------------------+----------------------+-----------------------------+
| -56(27-8)  1          56(8)  | 9      56      4     | 6(7)    3          -6(28-7) |
| 469-28     69(28)     3      | 126-8  7       6-8   | 5       14(28)     1469-28  |
| 4569-278   569(27-8)  4569-8 | 12368  1356    3568  | 1469-7  14(27-8)   1469-278 |
+------------------------------+----------------------+-----------------------------+


drop a monster: check

muti(3)-JellyFish 278:r37c28 / b1379 => way to many elims to count. (45?)

singles to the end...

easy 1 move,sure
... comprehending wtf this did not so much.

3 overlapping AIC chains (2,7,8) all work independently and make a nice jellyfish on their own... but since they overlap they also lock each other.
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1433
Joined: 05 September 2006

Re: Easy?

Postby pjb » Wed Aug 02, 2023 6:38 am

2-3 MSLS at r37c357 Links: 9r3 56r7 8c3 3c5 7c7 Eliminations: -9 r3c1, -56 r7c1, -8 r1c3, -3 r1c5, -7 r1c7, -3 r4c5, -8 r5c3, -7 r5c7, -9 r3c9, -6 r7c9, -8 r9c3, -3 r9c5, -7 r9c7 => lclste
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Easy?

Postby denis_berthier » Thu Aug 03, 2023 3:17 am

.
Relatively easy, unless one wants to make it artificially hard.

Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------------+-------------------------+-------------------------+
   ! 2356789 256789  5689    ! 3468    3469    36789   ! 1479    124578  1245789 !
   ! 56789   56789   1       ! 468     2       6789    ! 3       4578    45789   !
   ! 23789   4       89      ! 5       39      1       ! 79      6       2789    !
   +-------------------------+-------------------------+-------------------------+
   ! 14569   569     2       ! 7       134569  3569    ! 8       145     13456   !
   ! 14568   3       4568    ! 146     1456    2       ! 1467    9       14567   !
   ! 14569   569     7       ! 1346    8       3569    ! 2       145     13456   !
   +-------------------------+-------------------------+-------------------------+
   ! 25678   1       568     ! 9       56      4       ! 67      3       2678    !
   ! 24689   2689    3       ! 1268    7       68      ! 5       1248    124689  !
   ! 2456789 256789  45689   ! 12368   1356    3568    ! 14679   12478   1246789 !
   +-------------------------+-------------------------+-------------------------+
252 candidates.


Note that this is a very high number of candidates for a puzzle in S3FIN+BC3.

Code: Select all
x-wing-in-rows: n2{r3 r7}{c1 c9} ==> r9c9≠2, r9c1≠2, r8c9≠2, r8c1≠2, r1c9≠2, r1c1≠2
swordfish-in-columns: n7{c2 c6 c8}{r9 r2 r1} ==> r9c9≠7, r9c7≠7, r9c1≠7, r2c9≠7, r2c1≠7, r1c9≠7, r1c7≠7, r1c1≠7
hidden-pairs-in-a-column: c1{n2 n7}{r3 r7} ==> r7c1≠8, r7c1≠6, r7c1≠5, r3c1≠9, r3c1≠8, r3c1≠3
singles ==> r1c1=3, r3c5=3
x-wing-in-rows: n8{r3 r7}{c3 c9} ==> r9c9≠8, r9c3≠8, r8c9≠8, r5c3≠8, r2c9≠8, r1c9≠8, r1c3≠8
hidden-single-in-a-block ==> r5c1=8
hidden-pairs-in-a-column: c9{n2 n8}{r3 r7} ==> r7c9≠7, r7c9≠6, r3c9≠9, r3c9≠7
hidden-single-in-a-column ==> r5c9=7
x-wing-in-rows: n5{r5 r7}{c3 c5} ==> r9c5≠5, r9c3≠5, r4c5≠5, r1c3≠5
finned-swordfish-in-columns: n4{c7 c3 c5}{r1 r9 r5} ==> r5c4≠4
biv-chain[3]: b9n7{r9c8 r7c7} - r7c1{n7 n2} - r7c9{n2 n8} ==> r9c8≠8
biv-chain[3]: r3n9{c3 c7} - r3n7{c7 c1} - b1n2{r3c1 r1c2} ==> r1c2≠9
biv-chain[3]: r7n8{c3 c9} - r7n2{c9 c1} - b7n7{r7c1 r9c2} ==> r9c2≠8
whip[1]: r9n8{c6 .} ==> r8c4≠8, r8c6≠8
stte
denis_berthier
2010 Supporter
 
Posts: 4236
Joined: 19 June 2007
Location: Paris


Return to Puzzles