.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 12 9 124 ! 1236 136 8 ! 7 15 1245 !
! 6 5 1278 ! 4 179 279 ! 289 189 3 !
! 1278 124 3 ! 1279 5 279 ! 2489 6 12489 !
+-------------------+-------------------+-------------------+
! 129 7 124 ! 8 1349 39 ! 6 359 459 !
! 189 146 5 ! 1369 2 369 ! 3489 7 489 !
! 3 46 468 ! 679 4679 5 ! 1 2 489 !
+-------------------+-------------------+-------------------+
! 4 236 267 ! 5 3679 1 ! 2389 389 2689 !
! 125 1236 9 ! 236 8 4 ! 235 13 7 !
! 1257 8 1267 ! 23679 3679 23679 ! 2359 4 1269 !
+-------------------+-------------------+-------------------+
176 candidates.
1) SIMPLEST-FIRST SOLUTION, IN S3+BC3:hidden-pairs-in-a-block: b1{n7 n8}{r2c3 r3c1} ==> r3c1≠2, r3c1≠1, r2c3≠2, r2c3≠1
hidden-pairs-in-a-row: r1{n3 n6}{c4 c5} ==> r1c5≠1, r1c4≠2, r1c4≠1
finned-x-wing-in-columns: n7{c1 c6}{r9 r3} ==> r3c4≠7
finned-x-wing-in-rows: n6{r8 r5}{c2 c4} ==> r6c4≠6
finned-x-wing-in-rows: n8{r6 r2}{c3 c9} ==> r3c9≠8
biv-chain[2]: r8n6{c2 c4} - c6n6{r9 r5} ==> r5c2≠6
whip[1]: r5n6{c6 .} ==> r6c5≠6
finned-swordfish-in-columns: n1{c2 c4 c8}{r8 r5 r3} ==> r3c9≠1
biv-chain[3]: r5c2{n4 n1} - b5n1{r5c4 r4c5} - b5n4{r4c5 r6c5} ==> r6c2≠4, r6c3≠4
stte
1) 2-STEP SOLUTIONS:Using only reversible chains: z-chains[≤6], separated by a long series of Singles:
z-chain[6]: c1n9{r5 r4} - r4c6{n9 n3} - b6n3{r4c8 r5c7} - c7n4{r5 r3} - r3n8{c7 c9} - r6n8{c9 .} ==> r5c1≠8singles ==> r6c3=8, r3c1=8, r2c3=7, r9c1=7, r8c1=5, r9c7=5, r7c5=7, r6c4=7, r3c6=7
whip[1]: r7n9{c9 .} ==> r9c9≠9
whip[1]: r9n3{c6 .} ==> r8c4≠3
whip[1]: c3n6{r9 .} ==> r7c2≠6, r8c2≠6
singles ==> r8c4=6, r1c5=6, r1c4=3, r5c6=6, r6c2=6, r5c7=3, r8c7=2, r2c6=2, r9c4=2, r3c7=4, r1c3=4, r5c2=4, r5c9=8
z-chain[4]: b4n1{r5c1 r4c3} - c5n1{r4 r2} - c8n1{r2 r8} - c2n1{r8 .} ==> r1c1≠1stte
Using whips[≤4], also separated by lots of Singles:
whip[4]: r6c2{n6 n4} - r5c2{n4 n1} - r4n1{c3 c5} - c5n4{r4 .} ==> r6c3≠6whip[1]: c3n6{r9 .} ==> r7c2≠6, r8c2≠6
singles ==> r8c4=6, r1c5=6, r1c4=3, r5c6=6, r6c2=6, r5c7=3, r3c7=4, r1c3=4, r6c3=8, r3c1=8, r2c3=7, r9c1=7, r8c1=5
naked-single ==> r8c7=2, r2c6=2, r9c4=2, r9c7=5, r7c5=7, r6c4=7, r3c6=7, r5c9=8, r5c2=4
whip[1]: r7n9{c9 .} ==> r9c9≠9
biv-chain[2]: r8n1{c8 c2} - b1n1{r3c2 r1c1} ==> r1c8≠1stte
For fun, using an oddagon:
z-chain[4]: c5n4{r6 r4} - b5n1{r4c5 r5c4} - r5c2{n1 n6} - r6c2{n6 .} ==> r6c3≠4
oddagon[7]: r2n1{c5 c8},c8n1{r2 r8},r8n1{c8 c2},c2n1{r8 r5},r5n1{c2 c4},c4n1{r5 r3},b2n1{r3c4 r2c5} ==> r1c1≠1stte
OR:
oddagon[7]: r2n1{c5 c8},c8n1{r2 r8},r8n1{c8 c2},c2n1{r8 r5},r5n1{c2 c4},c4n1{r5 r3},b2n1{r3c4 r2c5} ==> r1c1≠1singles ==> r1c1=2, r4c3=2
The second step can be:
either:
biv-chain[5]: r4n4{c9 c5} - r4n1{c5 c1} - b4n9{r4c1 r5c1} - b4n8{r5c1 r6c3} - c3n4{r6 r1} ==> r1c9≠4or:
whip-bn[3]: b5n1{r5c4 r4c5} - b5n4{r4c5 r6c5} - b4n4{r6c3 .} ==> r5c2≠1stte