m_b_metcalf wrote:Denis, You might be interested to look at this
variant
Mike, Thanks
It's a very nice pattern also.
And the first puzzle by JPF with this pattern is extremely interesting also:
- Code: Select all
1 . . | . 2 . | . . 3
. 4 . | 5 . 6 | . 1 .
. . 7 | . . . | 5 . .
-------+-------+-------
. 8 . | . 4 . | . 5 .
5 . . | 9 . 1 | . . 8
. 3 . | . 5 . | . 9 .
-------+-------+-------
. . 3 | . . . | 2 . .
. 1 . | 2 . 3 | . 4 .
4 . . | . 9 . | . . 6 ED=9.3/9.3/9.3
SER 9.3 is normally beyond a manual solver's abilities.
It is easy to check that this puzzle is in T&E(1). But, it has no easy solution whip braids, let alone with whips.
However, it is a
champion of g-whips. it is very rare to see so many g-whips in a resolution path.
Notice that the first elimination is done by a g-whip[4] and the puzzle is solved in gW10, but if g-whips are not activated, the first elimination is done by a whip[12] or a braid[11].
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = gW
*** Using CLIPS 6.32-r773
***********************************************************************************************
183 candidates, 1024 csp-links and 1024 links. Density = 6.15%
140 g-candidates, 858 csp-glinks and 519 non-csp glinks
g-whip[4]: b2n7{r2c5 r1c456} - c8n7{r1 r789} - r8n7{c9 c1} - b4n7{r4c1 .} ==> r5c5 ≠ 7
whip[6]: r7c8{n8 n7} - r8c7{n7 n9} - r2c7{n9 n7} - r5n7{c7 c2} - c1n7{r6 r8} - c5n7{r8 .} ==> r9c7 ≠ 8
g-whip[7]: c4n6{r7 r456} - r5c5{n6 n3} - b6n3{r5c7 r4c7} - c4n3{r4 r3} - c4n1{r3 r9} - r9c7{n1 n7} - r7c8{n7 .} ==> r7c4 ≠ 8
g-whip[8]: c6n5{r9 r7} - r7n4{c6 c4} - c4n6{r7 r456} - r5c5{n6 n3} - r4n3{c4 c7} - r9c7{n3 n1} - c4n1{r9 r3} - c4n3{r3 .} ==> r9c6 ≠ 7
g-whip[9]: r7n4{c6 c4} - b8n6{r7c4 r789c5} - r5c5{n6 n3} - c8n3{r5 r9} - c7n3{r9 r4} - c4n3{r4 r3} - c4n1{r3 r9} - r9c7{n1 n7} - r7c8{n7 .} ==> r7c6 ≠ 8
whip[10]: c8n2{r5 r3} - r2n2{c9 c1} - r2n3{c1 c5} - r5c5{n3 n6} - c4n6{r6 r7} - r7n4{c4 c6} - c6n5{r7 r9} - r9c3{n5 n8} - c1n8{r8 r3} - r3n3{c1 .} ==> r5c3 ≠ 2
whip[6]: r5n2{c8 c2} - r5n7{c2 c7} - r5n3{c7 c5} - r2n3{c5 c1} - c1n2{r2 r3} - c8n2{r3 .} ==> r5c8 ≠ 6
whip[1]: b6n6{r6c7 .} ==> r1c7 ≠ 6
whip[7]: c8n3{r9 r5} - r5c5{n3 n6} - b8n6{r7c5 r7c4} - r7n4{c4 c6} - c6n5{r7 r9} - r9c2{n5 n2} - r5n2{c2 .} ==> r9c8 ≠ 7
whip[8]: r5n7{c8 c2} - r9n7{c2 c4} - r9n1{c4 c7} - c7n3{r9 r5} - c7n6{r5 r6} - r6c4{n6 n8} - r1c4{n8 n4} - c7n4{r1 .} ==> r4c7 ≠ 7
whip[9]: r5c5{n6 n3} - b2n3{r2c5 r3c4} - r4n3{c4 c7} - b6n6{r4c7 r6c7} - c7n1{r6 r9} - c4n1{r9 r7} - c4n4{r7 r1} - c7n4{r1 r5} - r5c3{n4 .} ==> r5c2 ≠ 6
whip[9]: r4c6{n7 n2} - r4c9{n2 n1} - c7n1{r6 r9} - r9n7{c7 c2} - r5c2{n7 n2} - c8n2{r5 r3} - c1n2{r3 r2} - r2n3{c1 c5} - b5n3{r5c5 .} ==> r4c4 ≠ 7
whip[2]: r4c4{n6 n3} - r5c5{n3 .} ==> r6c4 ≠ 6
whip[7]: r5n7{c8 c2} - r9n7{c2 c4} - r6c4{n7 n8} - r1c4{n8 n4} - c7n4{r1 r5} - r5c3{n4 n6} - r6n6{c1 .} ==> r6c7 ≠ 7
g-whip[8]: r2n3{c1 c5} - r3n3{c5 c1} - c1n2{r3 r456} - r5c2{n2 n7} - b6n7{r5c8 r456c9} - r2n7{c9 c7} - r9n7{c7 c4} - c5n7{r7 .} ==> r2c1 ≠ 8, r2c1 ≠ 9
whip[9]: r4c4{n6 n3} - r4c7{n3 n1} - b9n1{r9c7 r7c9} - c9n5{r7 r8} - b9n9{r8c9 r8c7} - r8c3{n9 n8} - c1n8{r8 r3} - r3n3{c1 c5} - c5n1{r3 .} ==> r4c3 ≠ 6
whip[9]: r5c2{n7 n2} - r9c2{n2 n5} - c6n5{r9 r7} - r7n4{c6 c4} - c4n6{r7 r4} - c4n3{r4 r3} - c1n3{r3 r2} - c1n2{r2 r3} - c8n2{r3 .} ==> r7c2 ≠ 7
whip[9]: c4n6{r7 r4} - r4n3{c4 c7} - r5n3{c7 c5} - b2n3{r2c5 r3c4} - c4n1{r3 r9} - c7n1{r9 r6} - c7n6{r6 r5} - c7n4{r5 r1} - c4n4{r1 .} ==> r7c4 ≠ 7
whip[9]: c4n4{r3 r7} - c4n6{r7 r4} - r4n3{c4 c7} - r5n3{c7 c5} - b2n3{r2c5 r3c4} - c4n1{r3 r9} - c7n1{r9 r6} - c7n4{r6 r5} - c7n6{r5 .} ==> r1c6 ≠ 4
g-whip[9]: r9c6{n5 n8} - r6n8{c6 c4} - b5n7{r6c4 r456c6} - r1c6{n7 n9} - r3c6{n9 n4} - r1c4{n4 n7} - r9n7{c4 c7} - c2n7{r9 r5} - c8n7{r5 .} ==> r9c2 ≠ 5
whip[2]: r9c2{n2 n7} - r5c2{n7 .} ==> r3c2 ≠ 2
whip[7]: r5n2{c2 c8} - r3n2{c8 c9} - c9n4{r3 r6} - r6n2{c9 c6} - r4c6{n2 n7} - b6n7{r4c9 r5c7} - r5c2{n7 .} ==> r4c1 ≠ 2
whip[9]: c1n8{r8 r3} - c1n3{r3 r2} - c1n2{r2 r6} - r5n2{c2 c8} - c8n3{r5 r9} - b9n8{r9c8 r7c8} - c8n7{r7 r1} - b2n7{r1c4 r2c5} - c5n8{r2 .} ==> r8c3 ≠ 8
g-whip[8]: b8n8{r8c5 r9c456} - b7n8{r9c3 r789c1} - r3n8{c1 c8} - r7c8{n8 n7} - c5n7{r7 r8} - c1n7{r8 r456} - r5c2{n7 n2} - c8n2{r5 .} ==> r2c5 ≠ 8
whip[3]: b9n8{r9c8 r8c7} - c1n8{r8 r7} - c5n8{r7 .} ==> r3c8 ≠ 8
whip[4]: c1n3{r3 r2} - c1n2{r2 r6} - r5n2{c2 c8} - r3c8{n2 .} ==> r3c1 ≠ 6
whip[5]: r3c2{n9 n6} - r3c8{n6 n2} - r5n2{c8 c2} - c1n2{r6 r2} - c1n3{r2 .} ==> r3c1 ≠ 9
whip[5]: c5n8{r8 r3} - r3n1{c5 c4} - r9c4{n1 n7} - c5n7{r7 r2} - b2n3{r2c5 .} ==> r9c6 ≠ 8
naked-single ==> r9c6 = 5
whip[4]: r9c3{n2 n8} - b1n8{r1c3 r3c1} - c1n2{r3 r2} - c1n3{r2 .} ==> r4c3 ≠ 2
whip[4]: b5n7{r6c6 r4c6} - b4n7{r4c1 r5c2} - r5n2{c2 c8} - r4n2{c9 .} ==> r6c9 ≠ 7
whip[4]: c8n2{r3 r5} - b4n2{r5c2 r6c3} - r9c3{n2 n8} - b1n8{r1c3 .} ==> r3c1 ≠ 2
whip[1]: r3n2{c9 .} ==> r2c9 ≠ 2
whip[4]: r9c3{n2 n8} - b1n8{r1c3 r3c1} - c1n3{r3 r2} - r2n2{c1 .} ==> r6c3 ≠ 2
whip[5]: c9n1{r6 r7} - r4n1{c9 c3} - r4n9{c3 c1} - r7n9{c1 c2} - r7n5{c2 .} ==> r6c7 ≠ 1
whip[4]: c9n4{r3 r6} - r6n1{c9 c3} - r4c3{n1 n9} - r2n9{c3 .} ==> r3c9 ≠ 9
whip[5]: c4n6{r7 r4} - r4n3{c4 c7} - c7n1{r4 r9} - c4n1{r9 r3} - c4n3{r3 .} ==> r7c4 ≠ 4
hidden-single-in-a-block ==> r7c6 = 4
whip[4]: c2n7{r9 r5} - c8n7{r5 r1} - b2n7{r1c4 r2c5} - b8n7{r8c5 .} ==> r9c7 ≠ 7
whip[4]: b2n4{r1c4 r3c4} - r3n8{c4 c1} - r3n3{c1 c5} - r3n1{c5 .} ==> r1c4 ≠ 8
whip[4]: b3n6{r1c8 r3c8} - b3n2{r3c8 r3c9} - b3n4{r3c9 r1c7} - r1c4{n4 .} ==> r1c8 ≠ 7
whip[2]: c8n7{r7 r5} - c2n7{r5 .} ==> r7c1 ≠ 7
whip[5]: c4n6{r7 r4} - c4n3{r4 r3} - r3n4{c4 c9} - r3n2{c9 c8} - r3n6{c8 .} ==> r7c2 ≠ 6
whip[1]: c2n6{r3 .} ==> r1c3 ≠ 6
whip[5]: r5n2{c2 c8} - c9n2{r6 r3} - r3n4{c9 c4} - r1c4{n4 n7} - r9n7{c4 .} ==> r9c2 ≠ 2
stte
.
P.S.: here is the semi-regular tiling produced by repeating the pattern (with two types of lozenge tiles with different inner patterns).
There's also a stereographic effect.
- Code: Select all
X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X
. X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X .
. . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . .
. X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X .
X . . X . X . . X X . . X . X . . X X . . X . X . . X X . . X . X . . X X . . X . X . . X
. X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X .
. . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . .
. X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X .
X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X
X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X
. X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X .
. . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . .
. X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X .
X . . X . X . . X X . . X . X . . X X . . X . X . . X X . . X . X . . X X . . X . X . . X
. X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X .
. . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . .
. X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X .
X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X
X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X
. X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X .
. . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . .
. X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X .
X . . X . X . . X X . . X . X . . X X . . X . X . . X X . . X . X . . X X . . X . X . . X
. X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X . . X .
. . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . . . . X . . . X . .
. X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X . . X . X . X . X .
X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X X . . . X . . . X