.
Solution in W6+Trid-OR2W6
Interesting to see the large number of eliminations due to the tridagon.
- Code: Select all
Resolution state after Singles (and whips[1]):
+----------------------+----------------------+----------------------+
! 6 8 123 ! 123 12345 12345 ! 1239 179 1237 !
! 5 123 7 ! 9 123 6 ! 1238 18 4 !
! 123 9 4 ! 7 8 123 ! 1236 16 5 !
+----------------------+----------------------+----------------------+
! 1238 7 12358 ! 4 1236 123 ! 123689 15689 12368 !
! 4 123 12358 ! 1236 9 7 ! 12368 1568 12368 !
! 9 6 123 ! 5 123 8 ! 1234 147 1237 !
+----------------------+----------------------+----------------------+
! 1378 134 1389 ! 136 134567 13459 ! 1468 2 168 !
! 1238 5 6 ! 123 1234 1234 ! 7 148 9 !
! 127 124 129 ! 8 12467 1249 ! 5 3 16 !
+----------------------+----------------------+----------------------+
196 candidates.
hidden-pairs-in-a-row: r1{n4 n5}{c5 c6} ==> r1c6≠3, r1c6≠2, r1c6≠1, r1c5≠3, r1c5≠2, r1c5≠1
finned-x-wing-in-rows: n6{r9 r4}{c5 c9} ==> r5c9≠6
- Code: Select all
Trid-OR2-relation for digits 2, 3 and 1 in blocks:
b1, with cells (marked #): r1c3, r2c2, r3c1
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r6c3, r5c2, r4c1
b5, with cells (marked #): r6c5, r5c4, r4c6
with 2 guardians (in cells marked @): n8r4c1 n6r5c4
+----------------------+----------------------+----------------------+
! 6 8 123# ! 123# 45 45 ! 1239 179 1237 !
! 5 123# 7 ! 9 123# 6 ! 1238 18 4 !
! 123# 9 4 ! 7 8 123# ! 1236 16 5 !
+----------------------+----------------------+----------------------+
! 1238#@ 7 12358 ! 4 1236 123# ! 123689 15689 12368 !
! 4 123# 12358 ! 1236#@ 9 7 ! 12368 1568 1238 !
! 9 6 123# ! 5 123# 8 ! 1234 147 1237 !
+----------------------+----------------------+----------------------+
! 1378 134 1389 ! 136 134567 13459 ! 1468 2 168 !
! 1238 5 6 ! 123 1234 1234 ! 7 148 9 !
! 127 124 129 ! 8 12467 1249 ! 5 3 16 !
+----------------------+----------------------+----------------------+
Trid-OR2-whip[4]: OR2{{n6r5c4 | n8r4c1}} - r8n8{c1 c8} - r2c8{n8 n1} - r3c8{n1 .} ==> r5c8≠6t-whip[5]: r9n6{c9 c5} - c5n7{r9 r7} - c5n5{r7 r1} - c5n4{r1 r8} - b9n4{r8c8 .} ==> r7c7≠6
whip[1]: b9n6{r9c9 .} ==> r4c9≠6
Trid-OR2-whip[3]: OR2{{n8r4c1 | n6r5c4}} - b6n6{r5c7 r4c7} - r4n9{c7 .} ==> r4c8≠8
Trid-OR2-whip[3]: OR2{{n8r4c1 | n6r5c4}} - b6n6{r5c7 r4c8} - r4n9{c8 .} ==> r4c7≠8whip[5]: c3n5{r4 r5} - b4n8{r5c3 r4c1} - r8n8{c1 c8} - r2c8{n8 n1} - r5c8{n1 .} ==> r4c3≠1
whip[5]: c3n5{r4 r5} - b4n8{r5c3 r4c1} - r8n8{c1 c8} - r2c8{n8 n1} - r5c8{n1 .} ==> r4c3≠2
whip[5]: c3n5{r4 r5} - b4n8{r5c3 r4c1} - r8n8{c1 c8} - r2c8{n8 n1} - r5c8{n1 .} ==> r4c3≠3
Trid-OR2-whip[4]: r4n9{c8 c7} - b6n6{r4c7 r5c7} - OR2{{n6r5c4 | n8r4c1}} - r4c3{n8 .} ==> r4c8≠5singles ==> r5c8=5, r4c3=5
finned-x-wing-in-columns: n8{c3 c9}{r7 r5} ==> r5c7≠8
whip[1]: b6n8{r5c9 .} ==> r7c9≠8
naked-pairs-in-a-block: b9{r7c9 r9c9}{n1 n6} ==> r8c8≠1, r7c7≠1
whip[1]: b9n1{r9c9 .} ==> r1c9≠1, r4c9≠1, r5c9≠1, r6c9≠1
biv-chain[3]: r7c9{n1 n6} - r9n6{c9 c5} - b8n7{r9c5 r7c5} ==> r7c5≠1
biv-chain[4]: b9n1{r7c9 r9c9} - r9n6{c9 c5} - c5n7{r9 r7} - b8n5{r7c5 r7c6} ==> r7c6≠1
t-whip[4]: r8n1{c6 c1} - r8n8{c1 c8} - r2c8{n8 n1} - r3n1{c8 .} ==> r9c6≠1
biv-chain[5]: r7c9{n1 n6} - r9n6{c9 c5} - b8n7{r9c5 r7c5} - r7n5{c5 c6} - r7n9{c6 c3} ==> r7c3≠1
whip[5]: r7n5{c5 c6} - r7n9{c6 c3} - b7n3{r7c3 r8c1} - b7n8{r8c1 r7c1} - r7n7{c1 .} ==> r7c5≠3
whip[5]: r7n5{c6 c5} - r7n7{c5 c1} - b7n3{r7c1 r8c1} - b7n8{r8c1 r7c3} - r7n9{c3 .} ==> r7c6≠3
Trid-OR2-whip[5]: r7c7{n4 n8} - b7n8{r7c1 r8c1} - OR2{{n8r4c1 | n6r5c4}} - b8n6{r7c4 r9c5} - c5n7{r9 .} ==> r7c5≠4
Trid-OR2-whip[5]: r4n9{c8 c7} - r4n6{c7 c5} - OR2{{n6r5c4 | n8r4c1}} - r8n8{c1 c8} - r2c8{n8 .} ==> r4c8≠1biv-chain[3]: r3c8{n1 n6} - r4c8{n6 n9} - b3n9{r1c8 r1c7} ==> r1c7≠1
Trid-OR2-whip[5]: OR2{{n6r5c4 | n8r4c1}} - b4n1{r4c1 r6c3} - r1n1{c3 c8} - r2c8{n1 n8} - r8n8{c8 .} ==> r5c4≠1t-whip[5]: r8n1{c6 c1} - r8n8{c1 c8} - r2c8{n8 n1} - b1n1{r2c2 r1c3} - c4n1{r1 .} ==> r9c5≠1
Trid-OR2-whip[5]: c5n7{r9 r7} - b8n6{r7c5 r7c4} - OR2{{n6r5c4 | n8r4c1}} - r8n8{c1 c8} - r8n4{c8 .} ==> r9c5≠4whip[6]: r7c9{n6 n1} - r7c4{n1 n3} - r7c2{n3 n4} - r9n4{c2 c6} - c6n9{r9 r7} - r7n5{c6 .} ==> r7c5≠6
Trid-OR2-whip[5]: r9c9{n1 n6} - r7n6{c9 c4} - OR2{{n6r5c4 | n8r4c1}} - b7n8{r7c1 r7c3} - c3n9{r7 .} ==> r9c3≠1biv-chain[4]: r9c3{n2 n9} - b8n9{r9c6 r7c6} - r7n5{c6 c5} - b8n7{r7c5 r9c5} ==> r9c5≠2
whip[6]: r7c9{n1 n6} - r7c4{n6 n3} - b7n3{r7c1 r8c1} - r7c2{n3 n4} - b9n4{r7c7 r8c8} - r8n8{c8 .} ==> r7c1≠1
Trid-OR2-ctr-whip[6]: r2c8{n1 n8} - r8n8{c8 c1} - b7n1{r8c1 r9c1} - r9n7{c1 c5} - b8n6{r9c5 r7c4} - OR2{{n6r5c4 n8r4c1 | .}} ==> r2c2≠1whip[6]: b1n1{r3c1 r1c3} - b2n1{r1c4 r2c5} - r6n1{c5 c7} - r6n4{c7 c8} - r8c8{n4 n8} - r2c8{n8 .} ==> r3c8≠1
singles ==> r3c8=6, r4c8=9, r1c7=9
Trid-OR2-whip[6]: OR2{{n8r4c1 | n6r5c4}} - r7n6{c4 c9} - r9c9{n6 n1} - b7n1{r9c1 r7c2} - r7c4{n1 n3} - b7n3{r7c1 .} ==> r8c1≠8easy end in W3:
singles ==> r8c8=8, r2c8=1, r1c8=7, r6c8=4, r7c7=4, r9c2=4, r6c9=7, r2c7=8
naked-pairs-in-a-row: r9{c3 c6}{n2 n9} ==> r9c1≠2
naked-triplets-in-a-row: r7{c2 c4 c9}{n1 n3 n6} ==> r7c3≠3, r7c1≠3
finned-x-wing-in-rows: n3{r7 r2}{c2 c4} ==> r1c4≠3
finned-x-wing-in-rows: n3{r2 r7}{c2 c5} ==> r8c5≠3
finned-swordfish-in-columns: n3{c1 c6 c7}{r3 r8 r4} ==> r4c9≠3
finned-x-wing-in-columns: n3{c9 c3}{r1 r5} ==> r5c2≠3
biv-chain[3]: r2c2{n2 n3} - b7n3{r7c2 r8c1} - b7n2{r8c1 r9c3} ==> r1c3≠2
biv-chain[3]: b2n1{r3c6 r1c4} - r1n2{c4 c9} - b3n3{r1c9 r3c7} ==> r3c6≠3
singles ==> r2c5=3, r2c2=2, r5c2=1, r7c2=3, r1c3=1, r1c4=2, r1c9=3, r3c7=2, r3c6=1, r3c1=3
whip[1]: b5n1{r6c5 .} ==> r8c5≠1
naked-pairs-in-a-row: r4{c1 c9}{n2 n8} ==> r4c6≠2, r4c5≠2
stte