Double Jeopardy

Post puzzles for others to solve here.

Double Jeopardy

Postby coloin » Fri Mar 28, 2025 5:13 pm

Code: Select all
+---+---+---+
|68.|...|...|
|5.7|9.6|..4|
|.94|78.|..5|
+---+---+---+
|.7.|4..|...|
|4..|.97|...|
|96.|5.8|...|
+---+---+---+
|...|...|.2.|
|.56|...|7.9|
|...|8..|53.|
+---+---+---+

This is minimal and ED 11.7/11.7/3.4 [without uniqueness]. And TE3.
The tridagon can't be used first off either...
coloin
 
Posts: 2537
Joined: 05 May 2005
Location: Devon

Re: Double Jeopardy

Postby pjb » Sat Mar 29, 2025 2:34 am

An interesting workout for Thor's Hammer.
21 Thor's Hammer moves with only simple eliminations on the way:
Code: Select all
 6       8       123*   | 123*   45     45     | 1239   179    1237   
 5       123*    7      | 9      123*   6      | 1238   18     4     
 123*   9       4      | 7      8      123*   | 1236   16     5     
------------------------+----------------------+---------------------
 1238*   7       12358  | 4      1236   123*    | 123689 15689  12368 
 4       123*    12358  | 1236*  9      7      | 12368  1568   12368 
 9       6       123*   | 5      123*   8      | 1234   147    1237   
------------------------+----------------------+---------------------
 1378    134     1389   | 136    134567 13459  | 1468   2      168   
 1238    5       6      | 123    1234   1234   | 7      148    9     
 127     124     129    | 8      12467  1249   | 5      3      16     
[code][/code]

Hidden Text: Show
type 2 TH with SL between 8 at r4c1 and 6 at r5c4
1. (8)r4c1 == (6)r5c4 - (6=4)r2468c5 - (4)r8c8 = (4-7)r6c8 = (7)r1c8 - (7=9)r1c3479 - (9)r4c7 = (9-8)r4c8 => -8 r4c8
2. (8)r4c1 == (6)r5c4 - (6=4)r2468c5 - (4)r8c8 = (4-7)r6c8 = (7)r1c8 - (7=9)r1c3479 - (9)r4c7 = (9-5)r4c8 = (5-8)r4c3 => -8 r4c3
3. (6)r5c4 == (8)r4c1 - (8)r5c3 = (8)r7c3 - (8=4)r7c79, r9c9 - (4)r6c7 = (4-7)r6c8 = (7-9)r1c8 = (9-5)r4c8 = (5-6)r5c8 => -6 r5c8
4. (6)r5c4 == (8)r4c1 - (8)r5c3 = (8)r7c3 - (8)r8c1 = (8-4)r8c8 = (4)r6c8 - (4)r6c7 = (4-6)r7c7 = (6)r79c9 => -6 r5c9

(6=4)r238c8 - (4=6)r2468c5 => -6 r4c8
(6=4)r7c9, r8c8, r9c9 - (4=6)r2468c5 => -6 r4c9
6s at r79c9 only ones in row/column => -6 r7c7.

5. (8)r4c1 == (6)r5c4 - (6)r4c5 = (6-8)r4c7 => -8 r4c7
6.
chain1: (8)r4c1 - r5c3 = r7c3 - r7c7 = r8c8 - (8=1)r2c8 - r1c7
chain2: (6)r5c4 - r4c5 = (6-9)r4c7 = (9-1)r1c7 => -1 r1c7
7.
chain1: (8)r4c1 - r5c3 = r7c3 - r7c7 = r8c8 - (8=1)r2c8 - r4c8 => -1 r4c8
chain2: (6)r5c4 - r4c5 = (6-9)r4c7 = r1c7 - r1c8 = (9-1)r4c8
8.
chain1: (8)r4c1 - r5c3 = r7c3 - r7c7 = r8c8 - (8=1)r2c8 - r5c8
chain2: (6)r5c4 - r4c5 = (6-9)r4c7 = r1c7 - r1c8 = (9-5)r4c8 = (5-1)r5c8 => -1 r5c8
9.
chain1: (8)r4c1 - r5c3 = r7c3 - r7c7 = r8c8 - r5c8
chain2: (6)r5c4 - r4c5 = (6-9)r4c7 = r1c7 - r1c8 = (9-5)r4c8 = (5-8)r5c8 => -8 r5c8

Sashimi X-wing of 8s (r48\c19), fin at r4c9, r8c8 => -8 r7c9
8s at r45c9 only ones in row/column => -8 r5c7.
Naked pairs of 16 at r79c9 => -1 r1c9, r4c9, r5c9, r6c9, r7c7, r8c8

10. (8)r4c1 == (6)r5c4 - (6=4)r2468c5 - (4=8)r8c8 => -8 r8c1

Naked triplets of 136 at r7c249 => -1 r7c1356, -3 r7c1356, -6 r7c5

11. (8)r4c1 = (6)r5c4 - (6)r4c5 = (6-7)r9c5 = (7)r7c5 - (7=8)r7c1 - loop => -1 r9c5; -2 r9c5;
12.
chain1: (8)r4c1 - r4c9 = r5c9 - r5c3 = (8-9)r7c3 = r7c6 - r9c6 = (9-1)r9c3
chain2: (6)r5c4 - r4c5 = r9c5 - r7c4 = r7c9 - (6=1)r9c9 - r9c3 => -1 r9c3
13'.
chain1: (8)r4c1 - (8=7)r7c1 - r9c1 = (7-6)r9c5 = (6-3)r7c4 = r7c2 - (3=2)r2c2 - r1c3
chain2: (6)r5c4 - r4c5 = (6-7)r9c5 = r7c5 - (7=8)r7c1 - (8=9)r7c3 - (9=2)r9c3 - r1c3 => -2 r1c3
14..
chain1: (8)r4c1 - (8=7)r7c1 - r9c1 = (7-6)r9c5 = (6-3)r7c4 = r7c2 - (23=1)r5c2 - r5c3
chain2: (6)r5c4 - r4c5 = (6-7)r9c5 = r7c5 - (7=8)r7c1 - r4c1 = (8-1)r5c3 => -1 r5c3

Finned X-wing of 1s (r38\c16), fin at r8c45 => -1 r9c6
Naked pairs of 29 at r9c36 => -2 r9c1

15.
chain1: (8)r4c1 - r4c9 = r5c9 - r5c3 = (8-9)r7c3 = r7c6 - (9=2)r9c6 - r8c5
chain2: (6)r5c4 - r4c5 = (6-7)r9c5 = (7-5)r7c5 = r1c5 - (5=4)r1c6 - r8c6 = (4-2)r8c5 => -2 r8c5
16.
chain1: (8)r4c1 - (8=7)r7c1 - (7=1)r9c1 - (1=3)r7c2 - (3=2)r2c2 - (2=3)r2c5 - r8c5
chain2: (6)r5c4 - r4c5 = (6-7)r9c5 = (7-5)r7c5 = r1c5 - (5=4)r1c6 - r8c6 = (4-3)r8c5 => -3 r8c5
17.
chain1: (8)r4c1 - (8=7)r7c1 - (7=1)r9c1 - (1=3)r7c2 - (3=2)r2c2 - (12=3)r3c1 - (3=2)r3c7 - r4c7
chain2: (6)r5c4 - r4c5 = (6-2)r4c7 => -2 r4c7
18.
chain1: (8)r4c1 - (8=7)r7c1 - (7=1)r9c1 - (13=2)r8c1 - (12=3)r3c1 - (3=2)r3c7 - (2=3)r1c9 - r4c9
chain2: (6)r5c4 - r4c5 = r9c5 - (6=1)r9c9 - (1=7)r9c1 - (7=8)r7c1 - r4c1 = (8-3)r4c9 => -3 r4c9
19.
chain1: (8)r4c1 - (8=2)r4c9 - (2=3)r1c9 - (3=1)r1c3 - (13=2)r1c4 - (23=1)r3c6 - (12=3)r4c6 - r4c7
chain2: (6)r5c4 - r4c5 = (6-3)r4c7 => -3 r4c7
20.
chain1: (8)r4c1 - (8=2)r4c9 - (2=3)r1c9 - (3=1)r1c3 - (13=2)r1c4 - r5c4 = r6c5 - r6c3
chain2: (6)r5c4 - r4c5 = (6-7)r9c5 = r7c5 - (7=8)r7c1 - (8=9)r7c3 - (9=2)r9c3 - r6c3 => -2 r6c3

Naked pairs of 13 at r16c3 => -3 r5c3

21. (6)r5c4 == (8)r4c1 - (8=2)r4c9 - (2=3)r1c9 - (3=1)r1c3 - (1=3)r6c3 - (3|2=1)r6c7 - (1=6)r4c7 => -6 r4c5, r5c7

1s at r46c5 only ones in row/column => -1 r4c6.

Solved with simple chains/BUG
pjb
2014 Supporter
 
Posts: 2690
Joined: 11 September 2011
Location: Sydney, Australia

Re: Double Jeopardy

Postby denis_berthier » Sat Mar 29, 2025 5:41 am

.
Solution in W6+Trid-OR2W6
Interesting to see the large number of eliminations due to the tridagon.

Code: Select all
Resolution state after Singles (and whips[1]):
   +----------------------+----------------------+----------------------+
   ! 6      8      123    ! 123    12345  12345  ! 1239   179    1237   !
   ! 5      123    7      ! 9      123    6      ! 1238   18     4      !
   ! 123    9      4      ! 7      8      123    ! 1236   16     5      !
   +----------------------+----------------------+----------------------+
   ! 1238   7      12358  ! 4      1236   123    ! 123689 15689  12368  !
   ! 4      123    12358  ! 1236   9      7      ! 12368  1568   12368  !
   ! 9      6      123    ! 5      123    8      ! 1234   147    1237   !
   +----------------------+----------------------+----------------------+
   ! 1378   134    1389   ! 136    134567 13459  ! 1468   2      168    !
   ! 1238   5      6      ! 123    1234   1234   ! 7      148    9      !
   ! 127    124    129    ! 8      12467  1249   ! 5      3      16     !
   +----------------------+----------------------+----------------------+
196 candidates.


hidden-pairs-in-a-row: r1{n4 n5}{c5 c6} ==> r1c6≠3, r1c6≠2, r1c6≠1, r1c5≠3, r1c5≠2, r1c5≠1
finned-x-wing-in-rows: n6{r9 r4}{c5 c9} ==> r5c9≠6
Code: Select all
Trid-OR2-relation for digits 2, 3 and 1 in blocks:
        b1, with cells (marked #): r1c3, r2c2, r3c1
        b2, with cells (marked #): r1c4, r2c5, r3c6
        b4, with cells (marked #): r6c3, r5c2, r4c1
        b5, with cells (marked #): r6c5, r5c4, r4c6
with 2 guardians (in cells marked @): n8r4c1 n6r5c4
   +----------------------+----------------------+----------------------+
   ! 6      8      123#   ! 123#   45     45     ! 1239   179    1237   !
   ! 5      123#   7      ! 9      123#   6      ! 1238   18     4      !
   ! 123#   9      4      ! 7      8      123#   ! 1236   16     5      !
   +----------------------+----------------------+----------------------+
   ! 1238#@ 7      12358  ! 4      1236   123#   ! 123689 15689  12368  !
   ! 4      123#   12358  ! 1236#@ 9      7      ! 12368  1568   1238   !
   ! 9      6      123#   ! 5      123#   8      ! 1234   147    1237   !
   +----------------------+----------------------+----------------------+
   ! 1378   134    1389   ! 136    134567 13459  ! 1468   2      168    !
   ! 1238   5      6      ! 123    1234   1234   ! 7      148    9      !
   ! 127    124    129    ! 8      12467  1249   ! 5      3      16     !
   +----------------------+----------------------+----------------------+


Trid-OR2-whip[4]: OR2{{n6r5c4 | n8r4c1}} - r8n8{c1 c8} - r2c8{n8 n1} - r3c8{n1 .} ==> r5c8≠6
t-whip[5]: r9n6{c9 c5} - c5n7{r9 r7} - c5n5{r7 r1} - c5n4{r1 r8} - b9n4{r8c8 .} ==> r7c7≠6
whip[1]: b9n6{r9c9 .} ==> r4c9≠6
Trid-OR2-whip[3]: OR2{{n8r4c1 | n6r5c4}} - b6n6{r5c7 r4c7} - r4n9{c7 .} ==> r4c8≠8
Trid-OR2-whip[3]: OR2{{n8r4c1 | n6r5c4}} - b6n6{r5c7 r4c8} - r4n9{c8 .} ==> r4c7≠8

whip[5]: c3n5{r4 r5} - b4n8{r5c3 r4c1} - r8n8{c1 c8} - r2c8{n8 n1} - r5c8{n1 .} ==> r4c3≠1
whip[5]: c3n5{r4 r5} - b4n8{r5c3 r4c1} - r8n8{c1 c8} - r2c8{n8 n1} - r5c8{n1 .} ==> r4c3≠2
whip[5]: c3n5{r4 r5} - b4n8{r5c3 r4c1} - r8n8{c1 c8} - r2c8{n8 n1} - r5c8{n1 .} ==> r4c3≠3
Trid-OR2-whip[4]: r4n9{c8 c7} - b6n6{r4c7 r5c7} - OR2{{n6r5c4 | n8r4c1}} - r4c3{n8 .} ==> r4c8≠5
singles ==> r5c8=5, r4c3=5
finned-x-wing-in-columns: n8{c3 c9}{r7 r5} ==> r5c7≠8
whip[1]: b6n8{r5c9 .} ==> r7c9≠8
naked-pairs-in-a-block: b9{r7c9 r9c9}{n1 n6} ==> r8c8≠1, r7c7≠1
whip[1]: b9n1{r9c9 .} ==> r1c9≠1, r4c9≠1, r5c9≠1, r6c9≠1
biv-chain[3]: r7c9{n1 n6} - r9n6{c9 c5} - b8n7{r9c5 r7c5} ==> r7c5≠1
biv-chain[4]: b9n1{r7c9 r9c9} - r9n6{c9 c5} - c5n7{r9 r7} - b8n5{r7c5 r7c6} ==> r7c6≠1
t-whip[4]: r8n1{c6 c1} - r8n8{c1 c8} - r2c8{n8 n1} - r3n1{c8 .} ==> r9c6≠1
biv-chain[5]: r7c9{n1 n6} - r9n6{c9 c5} - b8n7{r9c5 r7c5} - r7n5{c5 c6} - r7n9{c6 c3} ==> r7c3≠1
whip[5]: r7n5{c5 c6} - r7n9{c6 c3} - b7n3{r7c3 r8c1} - b7n8{r8c1 r7c1} - r7n7{c1 .} ==> r7c5≠3
whip[5]: r7n5{c6 c5} - r7n7{c5 c1} - b7n3{r7c1 r8c1} - b7n8{r8c1 r7c3} - r7n9{c3 .} ==> r7c6≠3
Trid-OR2-whip[5]: r7c7{n4 n8} - b7n8{r7c1 r8c1} - OR2{{n8r4c1 | n6r5c4}} - b8n6{r7c4 r9c5} - c5n7{r9 .} ==> r7c5≠4
Trid-OR2-whip[5]: r4n9{c8 c7} - r4n6{c7 c5} - OR2{{n6r5c4 | n8r4c1}} - r8n8{c1 c8} - r2c8{n8 .} ==> r4c8≠1

biv-chain[3]: r3c8{n1 n6} - r4c8{n6 n9} - b3n9{r1c8 r1c7} ==> r1c7≠1
Trid-OR2-whip[5]: OR2{{n6r5c4 | n8r4c1}} - b4n1{r4c1 r6c3} - r1n1{c3 c8} - r2c8{n1 n8} - r8n8{c8 .} ==> r5c4≠1
t-whip[5]: r8n1{c6 c1} - r8n8{c1 c8} - r2c8{n8 n1} - b1n1{r2c2 r1c3} - c4n1{r1 .} ==> r9c5≠1
Trid-OR2-whip[5]: c5n7{r9 r7} - b8n6{r7c5 r7c4} - OR2{{n6r5c4 | n8r4c1}} - r8n8{c1 c8} - r8n4{c8 .} ==> r9c5≠4
whip[6]: r7c9{n6 n1} - r7c4{n1 n3} - r7c2{n3 n4} - r9n4{c2 c6} - c6n9{r9 r7} - r7n5{c6 .} ==> r7c5≠6
Trid-OR2-whip[5]: r9c9{n1 n6} - r7n6{c9 c4} - OR2{{n6r5c4 | n8r4c1}} - b7n8{r7c1 r7c3} - c3n9{r7 .} ==> r9c3≠1
biv-chain[4]: r9c3{n2 n9} - b8n9{r9c6 r7c6} - r7n5{c6 c5} - b8n7{r7c5 r9c5} ==> r9c5≠2
whip[6]: r7c9{n1 n6} - r7c4{n6 n3} - b7n3{r7c1 r8c1} - r7c2{n3 n4} - b9n4{r7c7 r8c8} - r8n8{c8 .} ==> r7c1≠1
Trid-OR2-ctr-whip[6]: r2c8{n1 n8} - r8n8{c8 c1} - b7n1{r8c1 r9c1} - r9n7{c1 c5} - b8n6{r9c5 r7c4} - OR2{{n6r5c4 n8r4c1 | .}} ==> r2c2≠1
whip[6]: b1n1{r3c1 r1c3} - b2n1{r1c4 r2c5} - r6n1{c5 c7} - r6n4{c7 c8} - r8c8{n4 n8} - r2c8{n8 .} ==> r3c8≠1
singles ==> r3c8=6, r4c8=9, r1c7=9
Trid-OR2-whip[6]: OR2{{n8r4c1 | n6r5c4}} - r7n6{c4 c9} - r9c9{n6 n1} - b7n1{r9c1 r7c2} - r7c4{n1 n3} - b7n3{r7c1 .} ==> r8c1≠8

easy end in W3:
singles ==> r8c8=8, r2c8=1, r1c8=7, r6c8=4, r7c7=4, r9c2=4, r6c9=7, r2c7=8
naked-pairs-in-a-row: r9{c3 c6}{n2 n9} ==> r9c1≠2
naked-triplets-in-a-row: r7{c2 c4 c9}{n1 n3 n6} ==> r7c3≠3, r7c1≠3
finned-x-wing-in-rows: n3{r7 r2}{c2 c4} ==> r1c4≠3
finned-x-wing-in-rows: n3{r2 r7}{c2 c5} ==> r8c5≠3
finned-swordfish-in-columns: n3{c1 c6 c7}{r3 r8 r4} ==> r4c9≠3
finned-x-wing-in-columns: n3{c9 c3}{r1 r5} ==> r5c2≠3
biv-chain[3]: r2c2{n2 n3} - b7n3{r7c2 r8c1} - b7n2{r8c1 r9c3} ==> r1c3≠2
biv-chain[3]: b2n1{r3c6 r1c4} - r1n2{c4 c9} - b3n3{r1c9 r3c7} ==> r3c6≠3
singles ==> r2c5=3, r2c2=2, r5c2=1, r7c2=3, r1c3=1, r1c4=2, r1c9=3, r3c7=2, r3c6=1, r3c1=3
whip[1]: b5n1{r6c5 .} ==> r8c5≠1
naked-pairs-in-a-row: r4{c1 c9}{n2 n8} ==> r4c6≠2, r4c5≠2
stte
denis_berthier
2010 Supporter
 
Posts: 4374
Joined: 19 June 2007
Location: Paris

Re: Double Jeopardy

Postby Cenoman » Sat Mar 29, 2025 8:32 am

Code: Select all
 +-----------------------+--------------------------+---------------------------+
 |  6      8     123*    |  123*   45       45      |  1239     179     1237    |
 |  5      123*  7       |  9      123*     6       |  1238     18      4       |
 |  123*   9     4       |  7      8        123*    |  1236     16      5       |
 +-----------------------+--------------------------+---------------------------+
 | c1238*  7     12358   |  4      1236     123*    |  123689   15689   12368   |
 |  4      123*  12358   | d1236*  9        7       |  12368    1568    12368   |
 |  9      6     123*    |  5      123*     8       |  1234     147     1237    |
 +-----------------------+--------------------------+---------------------------+
 |  1378   134   1389    | e136    134567   13459   |  1468     2       168     |
 | b1238   5     6       | e123   e1234    e1234    |  7       a18-4    9       |
 |  127    124   129     |  8      12467    1249    |  5        3       16      |
 +-----------------------+--------------------------+---------------------------+

1. Tridagon (123)b1245 (*), having two guardians => 8r4c1 = 6r5c4
(8)r8c8 = r8c1 - (8)r4c1 == (6)r5c4 - (6=1234)b8p1456 => -4 r8c8; 10 placements

Code: Select all
 +----------------------+------------------------+-----------------------+
 |  6      8     123    |  123    45      45     |  9       7    123     |
 |  5      123   7      |  9      123     6      |  1238    18   4       |
 |  123    9     4      |  7      8       123    |  123     6    5       |
 +----------------------+------------------------+-----------------------+
 | a1238   7     5      |  4      1236    123    | d1236-8  9   *12368   |
 |  4      123  *1238   | b1236   9       7      | c1236-8  5   *12368   |
 |  9      6     123    |  5      123     8      |  123     4    7       |
 +----------------------+------------------------+-----------------------+
 |  1378   13   *1389   |  136    13567   1359   |  4       2   *168     |
 |  1238   5     6      |  123    1234    1234   |  7       18   9       |
 |  127    4     129    |  8      1267    129    |  5       3    16      |
 +----------------------+------------------------+-----------------------+

Re-using the tridagon derived strong link:
2. (8)r4c1 == (6)r5c4 - r5c7 = (6)r4c7 => -8 r4c7
3. X-Chain: (8)r5c3 = r7c3 - r7c9 = r45c9 => -8 r5c7; lcls, 3 placements

End with single digit patterns:
Code: Select all
 +----------------------+-----------------------+--------------------+
 |  6      8     1-23   |  123    45     45     |  9      7   ^23    |
 |  5    ^*23    7      |  9    ^*23     6      |  8      1    4     |
 |  123    9     4      |  7      8      123    |  23     6    5     |
 +----------------------+-----------------------+--------------------+
 |  1238   7     5      |  4      1236   123    |  1236   9   ^238   |
 |  4      123   1238   |  1236   9      7      |  1236   5   ^238   |
 |  9      6    ^123    |  5     ^123    8      | ^123    4    7     |
 +----------------------+-----------------------+--------------------+
 |  78    *13    89     | *136    57     59     |  4      2    16    |
 |  123    5     6      |  123    1234   1234   |  7      8    9     |
 |  127    4     129    |  8      1267   129    |  5      3    16    |
 +----------------------+-----------------------+--------------------+

4. (3)r2c5 = r2c2 - r7c2 = r7c4 => -3 r1c4

5. Kraken row (3)r6c357
(3)r6c3
(3)r6c5 - r2c5 = (3)r2c2
(3)r6c7 - r45c9 = (3)r1c9
=> -3 r1c3

6. Kraken row (2)r6c357
(2)r6c3
(2)r6c5 - r2c5 = (2)r2c2
(2)r6c7 - r45c9 = (2)r1c9
=> -2 r1c3; lclste
Cenoman
Cenoman
 
Posts: 3056
Joined: 21 November 2016
Location: France

Re: Double Jeopardy

Postby m_b_metcalf » Sat Mar 29, 2025 9:39 am

coloin wrote:This is minimal and ED 11.7/11.7/3.4 [without uniqueness].

With uniqueness: 1r8c1; stte.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13646
Joined: 15 May 2006
Location: Berlin

Re: Double Jeopardy

Postby totuan » Sun Mar 30, 2025 10:30 am

Code: Select all
 *-----------------------------------------------------------------------------*
 | 6       8      #123     |#123    *45     *45      | 1239    179     1237    |
 | 5      #123     7       | 9      #123     6       | 1238    18      4       |
 |#123     9       4       | 7       8      #123     | 1236    16      5       |
 |-------------------------+-------------------------+-------------------------|
 | 123-8   7      #1235+8  | 4      %1236   #123     | 123689  15689   12368   |
 | 4      #123    #1235+8  |#123+6   9       7       | 12368   1568    12368   |
 | 9       6      #123     | 5      #123     8       | 1234    147     1237    |
 |-------------------------+-------------------------+-------------------------|
 | 1378    134    *1389    | 136     134567 *13459   | 1468    2       168     |
 |#123+8   5       6       |#123    #123+4   1234    | 7       148     9       |
 | 127     124     129     | 8       12467   1249    | 5       3       16      |
 *-----------------------------------------------------------------------------*

My path for this one:
Tridagon(123) with two guardians (6)r5c4 & (8)r4c1
Impossible pathern(123) #-marked cell – like twin => (8)r45c3,r8c1=(4)r8c5=(6)r5c4

Present as diagram: => r4c1<>8, Tridagon(123) => r5c4=6 then ER-6.6 and not hard to finish.
Code: Select all
(8)r45c3,r8c1*
 ||
(4)r8c5------------------(4=5)r1c5-r1c6=(5-9)r7c6=(9-8)r7c3=(8)r45c3*
 ||                     |
(6)r5c4-(1236=4)r2468c5-

Prove for impossible pattern(123):
Hidden Text: Show
Code: Select all
A=(1|2|3)
 *-----------------------------------------------------------*
 | .     .     123   | 123   .     .     | .     .     .     |
 | .     123   .     | .     123   .     | .     .     .     |
 | 123   .     .     | .     .     123   | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     1235  | .     .     123   | .     .     .     |
 | .    A123   1235  | 123   .     .     | .     .     .     |
 | .     .     123   | .     123   .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     .     | .     .     .     |
 | 123   .     .     | 123   123   .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 *-----------------------------------------------------------*
Let A=1 => r1c3=1 => r8c4=1
 *-----------------------------------------------------------*
 | .     .     1     |h23    .     .     | .     .     .     |
 | .    b23    .     | .    a23+1  .     | .     .     .     |
 |c23    .     .     | .     .    i23-1  | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     235   | .     .     123   | .     .     .     |
 | .     1     235   |g23    .     .     | .     .     .     |
 | .     .     23    | .    f23-1  .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     .     | .     .     .     |
 |d23    .     .     | 1    e23    .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 *-----------------------------------------------------------*
Oddagon(23) abcde => r2c5=1 => r3c6,r6c5<>1 => Oddagon(23) cdefghi => impossible
The same for A=(2|3)

Thanks for the puzzle!
totuan
totuan
 
Posts: 257
Joined: 25 May 2010
Location: vietnam

Re: Double Jeopardy

Postby champagne » Sun Mar 30, 2025 1:24 pm

m_b_metcalf wrote:
coloin wrote:This is minimal and ED 11.7/11.7/3.4 [without uniqueness].

With uniqueness: 1r8c1; stte.

can you tell more,
champagne
2017 Supporter
 
Posts: 7528
Joined: 02 August 2007
Location: France Brittany

Re: Double Jeopardy

Postby m_b_metcalf » Sun Mar 30, 2025 3:13 pm

champagne wrote:
m_b_metcalf wrote:
coloin wrote:This is minimal and ED 11.7/11.7/3.4 [without uniqueness].

With uniqueness: 1r8c1; stte.

can you tell more,

It's a backdoor, for which uniqueness must be assumed.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13646
Joined: 15 May 2006
Location: Berlin

Re: Double Jeopardy

Postby champagne » Sun Mar 30, 2025 3:21 pm

Ok Mike, I thought that you had something close to what totuan wrote.
I had already seen a backdoor in other puzzles of the loki family;
champagne
2017 Supporter
 
Posts: 7528
Joined: 02 August 2007
Location: France Brittany


Return to Puzzles