David P Bird wrote:Feedback on this and any bludners or omissions I've made would be welcomed.
here you are
ronk wrote:Oops, I lost sight of H1521 being a "1/3 loop" rather than a "2/2 loop." I'll tweak my post tomorrow (and make an email generating post as well.)
David P Bird wrote:.
2. Domino Loop Definition
Domino Loops consist entirely of arguments for the digits that can occupy a loop of cell pairs. When they occur the grid can be rearranged so that all the cells pairs resemble dominos with pivot cells containing givens.
- Code: Select all
*--------*--------*--------*
| * H H | . . . | G G * |
| A . . | . . . | . . F | Lettered cell pairs all
| A . . | . . . | . . F | contain four candidates.
*--------*--------*--------*
| . . . | . . . | . . . | * = Pivot Givens
| . . . | . . . | . . . |
| . . . | . . . | . . . |
*--------*--------*--------*
| B . . | . . . | . . E |
| B . . | . . . | . . E |
| * C C | . . . | D D * |
*--------*--------*--------*
*--------*--------*--------*
| . A . | . . . | . F . |
| H * H | . . . | G * G | Lettered cell pairs all
| . A . | . . . | . F . | contain four candidates.
*--------*--------*--------*
| . . . | . . . | . . . | * = Pivot Givens
| . . . | . . . | . . . |
| . . . | . . . | . . . |
*--------*--------*--------*
| . B . | . . . | . E . |
| C * C | . . . | D * D |
| . B . | . . . | . E . |
*--------*--------*--------*
..1.....2.3...4.5.6.....7.......5.3....47.....8.9.3.....7...1...4.8...9.2.......6 # Easter Monster morph
..1.....2.3...4.5.6.....7......49.3....86.....9.3.1.....8.....1.4.5...9.7.....6.. # GP-H1521 morph
. . 1 | . . . | . . 2 . . 1 | . . . | . . 2
. 3 . | . . 4 | . 5 . . 3 . | . . 4 | . 5 .
6 . . | . . . | 7 . . 6 . . | . . . | 7 . .
-------+-------+------- -------+-------+-------
. . . | . . 5 | . 3 . . . . | . 4 9 | . 3 .
. . . | 4 7 . | . . . . . . | 8 6 . | . . .
. 8 . | 9 . 3 | . . . . 9 . | 3 . 1 | . . .
-------+-------+------- -------+-------+-------
. . 7 | . . . | 1 . . . . 8 | . . . | . . 1
. 4 . | 8 . . | . 9 . . 4 . | 5 . . | . 9 .
2 . . | . . . | . . 6 7 . . | . . . | 6 . .
# Easter Monster morph # GP-H1521 morph
The Truth/Link solutions from Allan Barker's XSUDO:
Easter Monster morph
16 Truths = {28N1379 1379N28}
16 Links = {89r2 35r8 59c2 48c8 16b37 27b19}
13 Eliminations --> r45c2<>9, r2c5<>89, r8c5<>35, r1c7<>6, r1c1<>7, r3c9<>1, r3c3<>2, r5c2<>5, r5c8<>8, r6c8<>4
GP-H1521 morph
16 Truths = {28N1379 1379N28}
16 Links = {3r8 9r2 4c8 5c2 16b37 2b179 7b19 8b139}
16 Eliminations --> r1c17<>8, r2c45<>9, r7c17<>2, r8c56<>3, r45c2<>5, r39c3<>2, r56c8<>4, r39c9<>8
ronk wrote: I think I'll give this thread a rest, until after I see others chime in.
You wrote:A naked pair loop indeed is easy to spot, if you look for it.
You wrote:Or am I missing something?
*----------------------*----------------------*----------------------*
| 45 25 <6> | 1789-4 248 249 | <3> 2457 1789-2 |
| 34 <9> <7> | 168-4 2348 <5> | 248 246 168-2 |
| <1> <8> 2345 | 679-4 2349 23469 | 2457 24567 679-2 |
*----------------------*----------------------*----------------------*
| 6789-3 167-3 189-3 | <2*> 3489 349 | 478 347 <5*> |
| 3589 235 23589 | 4589 <6> <7> | 24-8 <1> 238 |
| 3578 <4> 2358 | 58 35-8 <1> | <6> <9> 2378 |
*----------------------*----------------------*----------------------*
| <2> 356 49 | 49 <7> <8> | <1> 35-6 36 |
| 34567 3567 345 | 456 <1> 24-6 | <9> <8> 2367 |
| 6789-5 167-5 189-5 | <3*> 259 269 | 257 2567 <4*> |
*----------------------*----------------------*----------------------*
a a a | abcd abcd .
. . . | . . xbcd
. . . | . . xbcd
*-----------------------*-----------------------*-----------------------*
| 45 25 <6> | 1789-4 248 249 | <3> 2457 1789-2 |
| 34 <9> <7> | 168-4 2348 <5> | 248 246 168-2 |
| <1> <8> 2345 | 679-4 2349 23469 | 2457 24567 679-2 |
*-----------------------*-----------------------*-----------------------*
(34)r4 | 6789-3 167-3 189-3 | <2*> 3489 349 | 478 347 <5*> |
| 3589 235 23589 | 4589 <6> <7> | 24-8 <1> 238 | (89)b5
| 3578 <4> 2358 | 58 35-8 <1> | <6> <9> 2378 | (78)b6
*-----------------------*-----------------------*-----------------------*
| <2> 356 49 | 49 <7> <8> | <1> 35-6 36 |
| 34567 3567 345 | 456 <1> 24-6 | <9> <8> 2367 | (69)b8
(25)r9 | 6789-5 167-5 189-5 | <3*> 259 269 | 257 2567 <4*> | (67)b9
*-----------------------*-----------------------*-----------------------*
(45)c4 (23)c9
David P Bird wrote:My manual search method starts by looking for 4 potential pivot givens in four boxes that form a rectangle.
This quickly limits them to boxes 5689 where there are three possibilities.
I then gather the digits involved eg (168)r58c58 and check that none of them are givens in any of the other cells in these boxes.
. . 1 | . . . | 2 . 3
. 4 . | . . . | . 5 .
2 . 3 | . . 6 | . . 7
-------+-------+-------
. . . | . 2 . | . . 4
. . . | 1 . 3 | . . .
8 . . | . 7 9 | . . .
-------+-------+-------
1 . . | 5 . . | 9 . 2
. 6 . | . . . | . 8 .
9 . 2 | . . . | 7 . . # blue 2011b morph
blue 2011b p-1 morph
16 Truths = {28N1379 1379N28}
16 Links = {68r2 45r8 58c2 46c8 1b39 3b79 7b17 9b13}
16 Eliminations --> r2c456<>8, r8c456<>4, r456c2<>5, r456c8<>6, r1c1<>7, r3c7<>1, r7c3<>7, r9c9<>1
eleven wrote:Yes, this way is more elegant, clever and quicker than mine.
you wrote:But i am not eager to try it out, it seems, that i tire of sudoku.
ronk wrote:blue, do you have a link to your original posting of this puzzle?