Hi speter,
speter wrote:Mauriès Robert wrote:How do you explain that r2c3 or r3c3 is necessarily 4?
Yes, you are correct.
I was incorrectly thinking that since r2c3 or r2c9 must be 4; and r3c3 or r3c4 must be 4; then r2c3 or r3c3 must be 4.
Thanks for pointing out my error.
If your reasoning is wrong, the result is right. One can easily show, with a chain, that r2c3 or r3c3 is 4, like this :
(-4r2c23) => 4r1c1->8r1c6->3r5c6->3r7c4->6r9c6->3r9c1 => -3B9 which is impossible, so 4 is r2c2 or r2c3.
From then on we can make the eliminations you indicate.
That said, the basic techniques are sufficient to solve this puzzle without these eliminations, simply by noticing the alignments, especially the 3s and 7s and the 36r9c16 doublet that eliminates the 3r9c8. The puzzle then ends with singles.
Cordialy
Robert