After the direct sk-loop elims (1267r28c28 \ 16b37 27b19 + 8 cells):
- Code: Select all
,------------------,-----------------,------------------,
| 1 478 3458 | 3567 389 5678 | 3489 369 2 |
| 238 9 378 | 4 126 1267 | 138 5 368 |
| 3458 248 6 | 1235 389 1258 | 7 139 3489 |
:------------------+-----------------+------------------:
| 2468 5 1478 | 9 126 3 | 128 1267 678 |
| 389 126 389 | 126 7 4 | 3589 126 3589 |
| 2369 1267 1379 | 8 5 126 | 1239 4 3679 |
:------------------+-----------------+------------------:
| 7 148 4589 | 1235 348 1258 | 6 239 3459 |
| 456 3 145 | 1267 126 9 | 245 8 457 |
| 4589 468 2 | 3567 348 5678 | 3459 379 1 |
'------------------'-----------------'------------------'
Note the STP property: each of b1379 has one of 1267 in p28 and one in p46 and the dominoes in b2468 contain one of 16 and one of 27.
Each of 1267 has to appear in two of the b2468 dominoes.
The digit in r6c6 has to appear in r5 and c5, so it has to appear in one of b28 dominoes and one of b46 dominoes.
Suppose that the same 1|6,
a, appears in the b28 dominoes.
The other,
b, would then appear in b46 dominoes (STP).
Neither of them can appear in r6c6.
a in c6 must take r2c6.
b in r6 must take r6c2.
By STP, we get 2r2c5 and 2r5c2, which breaks 2b1, i.e. contra.
- Code: Select all
,------------------,-----------------,------------------,
| 1 478 3458 | 3567 389 5678 | 3489 369 2 |
|*238 9 378 | 4 2–a a–27 | 138 5 368 |
| 3458 *248 6 | 1235 389 1258 | 7 139 3489 |
:------------------+-----------------+------------------:
| 2468 5 1478 | 9 126 3 | 128 b27 678 |
| 389 2–b 389 | 126 7 4 | 3589 b2 3589 |
| 2369 b–27 1379 | 8 5 2–ab | 1239 4 3679 |
:------------------+-----------------+------------------:
| 7 148 4589 | 1235 348 1258 | 6 239 3459 |
| 456 3 145 | a27 a2 9 | 245 8 457 |
| 4589 468 2 | 3567 348 5678 | 3459 379 1 |
'------------------'-----------------'------------------'
Therefore one of 16 takes b24 dominoes and the other b68 dominoes.
Let's call them
a and
b in that order.
Here is the magic trick:
Suppose ar6c6.
Depending on 27b9 (note STP), we get one of the top grids.
Notice the UA7 in #-marked cells.
If one of the top grids has solutions, we can permute the UA7 in each of them to get solutions to the corresponding middle grid.
We can morph the solutions of the middle grid as follows: r|c: 321456987|321456987, digits: 673451289; to get solutions to the corresponding bottom grid.
The solutions to the bottom grids match the original givens and are different to the solutions of the corresponding top grid, so by uniqueness of the initial puzzle, the top grids have no solution.
- Code: Select all
+-------+-------+-------+ +-------+-------+-------+
| 1 . . | . . . | . . 2 | | 1 . . | . . . | . . 2 |
| . 9 . | 4 . . | . 5 . | | . 9 . | 4 . . | . 5 . |
| . . 6 | . . . | 7 . . | | . . 6 | . . . | 7 . . |
+-------+-------+-------+ +-------+-------+-------+
| . 5 . | 9#b 3 | .#7 . | | . 5 . | 9#2 3 | .#b . |
| . . . |#2#7 4 | .#b . | | . . . |#b#7 4 | .#2 . |
| . . . | 8 5 a | . 4 . | | . . . | 8 5 a | . 4 . |
+-------+-------+-------+ +-------+-------+-------+
| 7 . . | . . . | 6 2 . | | 7 . . | . . . | 6 . . |
| . 3 . |#b#2 9 | . 8 7 | | . 3 . |#7#b 9 | 2 8 . |
| . . 2 | . . . | . . 1 | | . . 2 | . . . | . 7 1 |
+-------+-------+-------+ +-------+-------+-------+
↓ ↓
+-------+-------+-------+ +-------+-------+-------+
| 1 . . | . . . | . . 2 | | 1 . . | . . . | . . 2 |
| . 9 . | 4 . . | . 5 . | | . 9 . | 4 . . | . 5 . |
| . . 6 | . . . | 7 . . | | . . 6 | . . . | 7 . . |
+-------+-------+-------+ +-------+-------+-------+
| . 5 . | 9#7 3 | .#b . | | . 5 . | 9#b 3 | .#2 . |
| . . . |#b#2 4 | .#7 . | | . . . |#7#2 4 | .#b . |
| . . . | 8 5 a | . 4 . | | . . . | 8 5 a | . 4 . |
+-------+-------+-------+ +-------+-------+-------+
| 7 . . | . . . | 6 2 . | | 7 . . | . . . | 6 . . |
| . 3 . |#2#b 9 | . 8 7 | | . 3 . |#b#7 9 | 2 8 . |
| . . 2 | . . . | . . 1 | | . . 2 | . . . | . 7 1 |
+-------+-------+-------+ +-------+-------+-------+
↓ ↓
+-------+-------+-------+ +-------+-------+-------+
| 1 . . | . . . | . . 2 | | 1 . . | . . . | . . 2 |
| . 9 . | 4 . . | . 5 . | | . 9 . | 4 . . | . 5 . |
| . . 6 | . . . | 7 . . | | . . 6 | . . . | 7 . . |
+-------+-------+-------+ +-------+-------+-------+
| . 5 . | 9 2 3 | . a . | | . 5 . | 9 a 3 | . 7 . |
| . . . | a 7 4 | . 2 . | | . . . | 2 7 4 | . a . |
| . . . | 8 5 b | . 4 . | | . . . | 8 5 b | . 4 . |
+-------+-------+-------+ +-------+-------+-------+
| 7 . . | . . . | 6 . . | | 7 . . | . . . | 6 2 . |
| . 3 . | 7 a 9 | 2 8 . | | . 3 . | a 2 9 | . 8 7 |
| . . 2 | . . . | . 7 1 | | . . 2 | . . . | . . 1 |
+-------+-------+-------+ +-------+-------+-------+
Here is a more concise explanation:
Consider the grids A: the top-left grid with
a=1, B: the top-left grid with
a=6, C: the top-right grid with
a=1, D: the top-right grid with
a=6.
Candidates of a grid are all valid (row, column, digit) triples which are not given and are not seen by any given.
The sudoku isomorphism r|c: 321456987|321456987, digits: 673451289 maps each candidate of A to a candidate of D and vice versa, same for B and C.
Suppose one of the grids, WLOG A, has some solutions. Given a solution of A, we can apply the isomorphism to the solved values (not givens) and place the result in D. This gives us a solution to D.
Both solutions match the givens of the puzzle and they are different, which is a contradiction with uniqueness of the puzzle.
So A (and each of the other grids) has no solutions.
Suppose now that one of 27,
c, takes the dominoes in b28 and the other,
d, takes the dominoes in b46.
Neither of them can take r6c6, and as
ar6c6 causes a uniqueness contradiction, we get
br6c6.
Therefore we get
br5c8 and
br8c5 (singles in r5 and c5, given that
b takes b68 dominoes).
If
c=2, it must in b8 take r8c4 and then cannot be placed in r5, i.e. contra.
If
d=2, it must in b6 take r4c8 and then cannot be placed in c5, i.e. contra.
- Code: Select all
,------------------,-----------------,------------------,
| 1 478 3458 | 3567 389 5678 | 3489 369 2 |
| 238 9 378 | 4 ac ac | 138 5 368 |
| 3458 248 6 | 1235 389 1258 | 7 139 3489 |
:------------------+-----------------+------------------:
| 2468 5 1478 | 9 126 3 | 128 bd 678 |
| 389 ad 389 | 126 7 4 | 3589 b–d 3589 |
| 2369 ad 1379 | 8 5 b | 1239 4 3679 |
:------------------+-----------------+------------------:
| 7 148 4589 | 1235 348 1258 | 6 239 3459 |
| 456 3 145 | bc b–c 9 | 245 8 457 |
| 4589 468 2 | 3567 348 5678 | 3459 379 1 |
'------------------'-----------------'------------------'
So one of 27 takes the b26 dominoes and the other takes the b48 dominoes.
–7r1c4, –7r4c3, –7r6c9, –7r9c6, skfr 10.4 -> 9.3
The b28 and b46 dominoes form quads.
There are still a few steps possible with just 1267, but they are not very helpful.
YZF_Sudoku is able to solve it with dynamic chains.
As a side note, all of this hinges on 7 (or 2, isomorphic) being the given in r5c5.
If it were a 1|6, then either 16 or 27 could appear in b28 dominoes.
In the first puzzle, we get the quads, in the second 27 break them, in the third 16 break them:
1.......2.9.4...5...6...7...8.5.3.......64......98..4.2.....6...4...9.8...7.....1
1.......2.9.4...5...6...7...8.5.3.......64......89..4.2.....6...4...9.8...7.....1
1.......2.9.4...5...6...7...8.9.4.......63......85..4.2.....6...5...9.8...7.....1
(The last one is also unique with 7r5c5.)