hm, yes, the flip-flop either leads to 2 pattern solutions in the rows or other deadly patterns (producing a BUG-lite/revetsed).
But because the rows can't be fixed without knowing, where the 2 digits are, there will always be 2 solutions possible.
*--------------------------------------------------------------------------------------------*
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| abcd abcd .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| abcd abcd .| X . .| . . .|
| abcd abcd .| Y . .| . . .|
| . . .| . . .| . . .|
*--------------------------------------------------------------------------------------------*
| X Z .| . . .| . . .|
| Z Y .| . . .| . . .|
*--------------------------------------------------------------------------------------------*
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| abcd abcd .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| abcd abcd #| a # #| # # #|
| abcd abcd #| b # #| # # #|
| . . .| . . .| . . .|
*--------------------------------------------------------------------------------------------*
| 1 b .| 2 . .| . . .|
| a 2 .| 1 . .| . . .|
| b . .| . . .| . . .|
| a . .| . . .| . . .|
| abcd abcd .| . . .|
|------------------------------+------------------------------+
| abcd abcd .| . c .|
| abcd abcd .| . d .|
| . . .| . . .|
*-------------------------------------------------------------*
*--------------------------------------------------------------------------------------------*
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| abcd abcd .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| abcd abcd #| X # #| # # #|
| abcd abcd #| a # #| # # #|
| . . .| . . .| . . .|
*--------------------------------------------------------------------------------------------*
| abcd abcd .| . . .|
|------------------------------+------------------------------+
| abcd abcd .| . X b|
| abcd abcd .| . c d|
| . . .| . . .|
*-------------------------------------------------------------*
*--------------------------------------------------------------------------------------------*
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| . . .| . . .| . . .|
| . . .| . . .| . . .|
| abcd abcd .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| abcd abcd #| X # #| # # #|
| abcd abcd #| Y # #| # # #|
| . . .| . . .| . . .|
*--------------------------------------------------------------------------------------------*
| abcd abcd .| . . .| . . .|
|------------------------------+------------------------------+------------------------------|
| abcd abcd .| . X Y| a . .|
| abcd abcd .| . b c| d . .|
| . . .| . . .| . . .|
*--------------------------------------------------------------------------------------------*
*-----------------------------------------------*
| 1 2 .| . . 4| 3 5 .|
| . 7 3| 1 . 5| . . 4|
| 4 . .| . 2 3| . . 1|
|---------------+---------------+---------------|
| 2359 356 279| 8 . .| 4 1 .|*
| 8 1 4| 5 . 2| . . 3|
| 239 36 279| 4 . 1| 5 8 .|*
|---------------+---------------+---------------|
| 35 358 .| . 1 7| . 4 9|
| . 9 1| 3 4 8| . . 5|
| 7 4 .| . 5 .| 1 3 .|
*-----------------------------------------------*
2..437...4.7...2...1.5.247.7.2.4.3.514.2.37.83.9.7.124.2.3.9.47.74.2.6.....764..2
*-----------------------------------------------*
| 2 . .| 4 3 7| . . .|
| 4 . 7| . . .| 2 . .|
| . 1 .| 5 . 2| 4 7 .|
|---------------+---------------+---------------|
| 7 68 2| . 4 .| 3 . 5|
| 1 4 .| 2 # 3| 7 . 8|
| 3 568 9| . 7 .| 1 2 4|
|---------------+---------------+---------------|
| . 2 .| 3 . 9| . 4 7|
| . 7 4| . 2 .| 6 . .|
| . . .| 7 6 4| . . 2|
*-----------------------------------------------*
abcd abcd . |
------------+
abcd abcd . | (*)
abcd abcd . | (*) rows having distincion 1
BTW: this example is not very good, becaurse the givens in r46 is too many (...)
+----------------------+----------------------+----------------------+
| 79 479 5 | 47 2 3 | 6 1 8 |
| 27 1247 8 | 6 1457 1457 | 9 3 47 |
| 6 147 3 | 9 1478 1478 | 2 5 47 |
+----------------------+----------------------+----------------------+
| 3 57 4 | 1 9 2 | 8 67 567 |
| 1 2579 29 | 8 4567 4567 | 3 24679 45679 |
| 2579 8 6 | 3 457 457 | 45 2479 1 |
+----------------------+----------------------+----------------------+
| 25 1256 12 | 457 14567 9 | 145 8 3 |
| 4 3 7 | 2 1568 1568 | 15 69 569 |
| 8 1569 19 | 45 3 1456 | 7 469 2 |
+----------------------+----------------------+----------------------+
....12......3..4..3..4..15...6.41..74.....3..........5.17..4..6..2.........82.9.. SE 8.5->2.8
....12......3..4..3..4..15...6.41...7.....5....2.....8.51..4..6..8.........72.9.. SE 9.1->2.8
*-------------------------*-------------------------*-------------------------*
| 56789 56789 4 | 5679 <1> <2> | 678 36789 389 |
| 1256789 256789 1589 | <3> 56789 56789 | <4> 26789 289 |
| <3> 26789 89 | <4> 6789 6789 | <1> <5> 289 |
*-------------------------*-------------------------*-------------------------*
| 2589 3 <6> | 259 <4> <1> | 28 289 <7> |
| <4> 25789 589 | 25679 56789 56789 | <3> 12689 1289 |
| 12789 2789 189 | 2679 36789 36789 | 268 4 <5> |
*-------------------------*-------------------------*-------------------------*
| 589 <1> <7> | 59 359 <4> | 258 238 <6> |
| 5689 45689 <2> | 1 35679 35679 | 578 378 348 |
| 56 456 3 | <8> <2> 567 | <9> 17 14 |
*-------------------------*-------------------------*-------------------------*
David P Bird wrote:This is the full grid from ssxssxs after basics:
- Code: Select all
*-------------------------*-------------------------*-------------------------*
| 56789 56789 4 | 5679 <1> <2> | 678 36789 389 |
| 1256789 256789 1589 | <3> 56789 56789 | <4> 26789 289 |
| <3> 26789 89 | <4> 6789 6789 | <1> <5> 289 |
*-------------------------*-------------------------*-------------------------*
| 2589 3 <6> | 259 <4> <1> | 28 289 <7> |
| <4> 25789 589 | 25679 56789 56789 | <3> 12689 1289 |
| 12789 2789 189 | 2679 36789 36789 | 268 4 <5> |
*-------------------------*-------------------------*-------------------------*
| 589 <1> <7> | 59 359 <4> | 258 238 <6> |
| 5689 45689 <2> | 1 35679 35679 | 578 378 348 |
| 56 456 3 | <8> <2> 567 | <9> 17 14 |
*-------------------------*-------------------------*-------------------------*
Unsolved
r2 (1256789)r2c1235689 }
r3 (26789)r3c23569 } distinction = 2
c5 (356789)r235678c4 }
c6 (356789)r235689c5 } distinction = 1
[Aside this unsolved digits/positions notation is my way of checking the distinctions; count the unique underlines and divide by 2.]
We can see that if (5)r2c1 was true (6789)r23c56 would be locked and the distinction between r2 & r3 would be 1, so it can be eliminated
However, if (1)r2c1 is eliminated the distinction would also reduce to 1 but (56789)r23c56 would be left. From my reading of the earlier proofs, this pattern has not yet been analysed and shown to be deadly, so this elimination is unsound. Have I missed something?