diamond puzzle

Post puzzles for others to solve here.

diamond puzzle

Postby urhegyi » Thu Aug 19, 2021 7:49 pm

Image
Code: Select all
3.......6.7..4..8...9..3..15..7......4..2..59..8..51..1..6....2..3.......6......7 ED=8.3/8.3/8.3

one step solution possible!
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: diamond puzzle

Postby Leren » Thu Aug 19, 2021 8:29 pm

Code: Select all
*----------------------------------------------------------------*
| 3      1258   245-1 | 12589   15789 12789  | 24579 2479    6   |
| 26     7      256-1 | 1259    4     1269   | 2359  8       35  |
| 2468   258    9     | 258     5678  3      | 2457  247     1   |
|---------------------+----------------------+-------------------|
| 5      39-12 P126   | 7       13689 14689  | 23468 2346    348 |
|P67     4     P167   | 138     2     168    | 3678  5       9   |
|B2679  B239    8     |p349     6-39  5      | 1     267-34 p34  |
|---------------------+----------------------+-------------------|
| 1      589    457   | 6       35789 4789   | 34589 349     2   |
| 24789  2589   3     | 124589  15789 124789 | 45689 1469    458 |
| 2489   6      245   | 1234589 13589 12489  | 34589 1349    7   |
*----------------------------------------------------------------*

Sue de Coq: Base Cells r6c12 {23679} ; Row Pincer Cells r6c49 {349} ; Box Pincer Cells r4c3 {126} r5c13 {167} => - 1 r12c3, - 12 r4c2, - 39 r6c5; - 34 r6c8; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: diamond puzzle

Postby jco » Thu Aug 19, 2021 8:38 pm

Code: Select all
.------------------------------------------------------------------.
| 3      1258   245-1| 12589    15789  12789  | 24579  2479    6   |
| 26     7      256-1| 1259     4      1269   | 2359   8       35  |
| 2468   258    9    | 258      5678   3      | 2457   247     1   |
|--------------------+------------------------+--------------------|
| 5      39-12 d126  | 7        1389-6 1489-6 |c23468 c2346   b348 |
|a67     4     a167  | 138      2      18-6   |b3678   5       9   |
| 2679   239    8    | 349      369    5      | 1      267-34 b34  |
|--------------------+------------------------+--------------------|
| 1      589    457  | 6        35789  4789   | 34589  349     2   |
| 24789  2589   3    | 124589   15789  124789 | 45689  1469    458 |
| 2489   6      245  | 1234589  13589  12489  | 34589  1349    7   |
'------------------------------------------------------------------'

(1=67)r5c13 - (6|7=348)b6p349 - (3|4|8=26)r4c78 - (2|6=1)r4c3 - loop => -(34)r6c8, -6 b5p236, -12 r4c2, -1 r12c3; ste

Edit 1: The intended meaning for the Sudoku move: if 1 is false at r5c13, then 67 is locked there, implying that it cannot be at r5c7, thus making 348 locked at b6p349, which in turn implies that 348 cannot be at r4c78, leaving
26 locked there, and this implies that 26 is false at r4c3, so 1 must be there; but this implies that 1 cannot be
at r5c13, leaving 67 locked there ... loop.
Edit 2: improved notation based on totuan observation (thanks!) and following eleven's way of writing the loop, and included missed eliminations: -1 r12c3, -1 r4c2 (my thanks to eleven!).
Last edited by jco on Fri Aug 20, 2021 5:23 pm, edited 2 times in total.
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: diamond puzzle

Postby denis_berthier » Fri Aug 20, 2021 3:51 am

.
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------------+-------------------------+-------------------------+
   ! 3       1258    1245    ! 12589   15789   12789   ! 24579   2479    6       !
   ! 26      7       1256    ! 1259    4       1269    ! 2359    8       35      !
   ! 2468    258     9       ! 258     5678    3       ! 2457    247     1       !
   +-------------------------+-------------------------+-------------------------+
   ! 5       1239    126     ! 7       13689   14689   ! 23468   2346    348     !
   ! 67      4       167     ! 138     2       168     ! 3678    5       9       !
   ! 2679    239     8       ! 349     369     5       ! 1       23467   34      !
   +-------------------------+-------------------------+-------------------------+
   ! 1       589     457     ! 6       35789   4789    ! 34589   349     2       !
   ! 24789   2589    3       ! 124589  15789   124789  ! 45689   1469    458     !
   ! 2489    6       245     ! 1234589 13589   12489   ! 34589   1349    7       !
   +-------------------------+-------------------------+-------------------------+


1) Simplest-first solution, in W4:
z-chain[4]: c2n3{r4 r6} - b4n9{r6c2 r6c1} - r6n7{c1 c8} - r6n2{c8 .} ==> r4c2≠2
z-chain[4]: r6n7{c1 c8} - r6n6{c8 c5} - b2n6{r3c5 r2c6} - r2c1{n6 .} ==> r6c1≠2
biv-chain[4]: r5n3{c4 c7} - b6n7{r5c7 r6c8} - r6n2{c8 c2} - b4n3{r6c2 r4c2} ==> r4c5≠3
biv-chain[4]: r6n2{c2 c8} - b6n7{r6c8 r5c7} - r5c1{n7 n6} - r2c1{n6 n2} ==> r1c2≠2, r3c2≠2
z-chain[4]: r6n7{c8 c1} - r5c1{n7 n6} - r3n6{c1 c5} - r3n7{c5 .} ==> r1c8≠7
z-chain[4]: r5c1{n6 n7} - r6n7{c1 c8} - r6n6{c8 c5} - r3n6{c5 .} ==> r2c1≠6
naked-single ==> r2c1=2
t-whip[4]: r6n7{c8 c1} - r5c1{n7 n6} - r3n6{c1 c5} - r6n6{c5 .} ==> r6c8≠2, r6c8≠3, r6c8≠4
stte


2) 1-step solutions?
Considering there exists such an elementary solution with chains of length ≤ 4, all the 1-step solutions based on chains are absurdly long.
Here is an as much, but not more absurd one based on forcing chains, applied to the trivalue candidates in r6c4

FORCING[3]-T&E(W1) applied to trivalue candidates n3r6c4, n4r6c4 and n9r6c4 :
===> 8 values decided in the three cases: n8r4c9 n1r1c2 n6r6c5 n6r2c6 n8r3c2 n7r7c3 n5r9c4 n5r3c5
===> 106 candidates eliminated in the three cases: n2r1c2 n5r1c2 n8r1c2 n1r1c3 n2r1c3 n1r1c4 n2r1c4 n5r1c4 n1r1c5 n5r1c5 n1r1c6 n2r1c6 n8r1c6 n9r1c6 n2r1c7 n7r1c7 n9r1c7 n7r1c8 n6r2c1 n1r2c3 n6r2c3 n2r2c4 n5r2c4 n1r2c6 n2r2c6 n9r2c6 n2r2c7 n5r2c7 n2r3c1 n8r3c1 n2r3c2 n5r3c2 n5r3c4 n8r3c4 n6r3c5 n7r3c5 n8r3c5 n4r3c7 n5r3c7 n1r4c2 n2r4c2 n3r4c5 n6r4c5 n8r4c5 n1r4c6 n6r4c6 n8r4c6 n4r4c7 n6r4c7 n8r4c7 n2r4c8 n3r4c8 n3r4c9 n4r4c9 n7r5c3 n1r5c4 n6r5c6 n8r5c7 n6r6c1 n3r6c5 n9r6c5 n3r6c8 n4r6c8 n6r6c8 n8r7c2 n4r7c3 n5r7c3 n5r7c5 n7r7c5 n7r7c6 n3r7c7 n4r7c8 n4r8c1 n7r8c1 n8r8c2 n2r8c4 n5r8c4 n8r8c4 n9r8c4 n1r8c5 n5r8c5 n4r8c6 n8r8c6 n9r8c6 n4r8c7 n4r8c8 n8r8c9 n2r9c1 n5r9c3 n1r9c4 n2r9c4 n3r9c4 n4r9c4 n8r9c4 n9r9c4 n5r9c5 n8r9c5 n9r9c5 n1r9c6 n4r9c6 n8r9c6 n3r9c7 n4r9c7 n5r9c7 n4r9c8 n9r9c8
Code: Select all
   +----------------+----------------+----------------+
   ! 3    1    45   ! 89   789  7    ! 45   249  6    !
   ! 2    7    25   ! 19   4    6    ! 39   8    35   !
   ! 46   8    9    ! 2    5    3    ! 27   247  1    !
   +----------------+----------------+----------------+
   ! 5    39   126  ! 7    19   49   ! 23   46   8    !
   ! 67   4    16   ! 38   2    18   ! 367  5    9    !
   ! 279  239  8    ! 349  6    5    ! 1    27   34   !
   +----------------+----------------+----------------+
   ! 1    59   7    ! 6    389  489  ! 4589 39   2    !
   ! 289  259  3    ! 14   789  127  ! 5689 169  45   !
   ! 489  6    24   ! 5    13   29   ! 89   13   7    !
   +----------------+----------------+----------------+

stte


3) a 2-step solution in W4:
Without increasing the length of the necessary chains, here is a much more interesting 2-step solution in W4 (obtained with the fewer-steps algorithm, after a single try). (Indeed, this is the only 2-step solution possible in W4 with the heuristic of the algorithm.)
You can notice that these steps were already present in the simplest-first solution (which implies that the other steps were not necessary).

=====> STEP #1
z-chain[4]: r5c1{n6 n7} - r6n7{c1 c8} - r6n6{c8 c5} - r3n6{c5 .} ==> r2c1≠6
naked-single ==> r2c1=2
=====> STEP #2
whip[4]: r6n7{c8 c1} - r5c1{n7 n6} - r6n6{c1 c5} - r3n6{c5 .} ==> r6c8≠2
stte
Last edited by denis_berthier on Fri Aug 20, 2021 4:44 am, edited 2 times in total.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: diamond puzzle

Postby totuan » Fri Aug 20, 2021 4:18 am

jco wrote:
Code: Select all
.------------------------------------------------------------------.
| 3      1258   1245 | 12589    15789  12789  | 24579  2479    6   |
| 26     7      1256 | 1259     4      1269   | 2359   8       35  |
| 2468   258    9    | 258      5678   3      | 2457   247     1   |
|--------------------+------------------------+--------------------|
| 5      139-2 d126  | 7        1389-6 1489-6 |c23468 c2346   b348 |
|a67     4     a167  | 138      2      18-6   |b3678   5       9   |
| 2679   239    8    | 349      369    5      | 1      267-34 b34  |
|--------------------+------------------------+--------------------|
| 1      589    457  | 6        35789  4789   | 34589  349     2   |
| 24789  2589   3    | 124589   15789  124789 | 45689  1469    458 |
| 2489   6      245  | 1234589  13589  12489  | 34589  1349    7   |
'------------------------------------------------------------------'

(1=67)r5c13 - (67=348)b6p349 - (348=26)r4c78 - (2|6=1)r4c3 - loop => -(34)r6c8, -6 b5p236, -2 r4c2; ste

Maybe I'm wrong, but I don't see the loop here - can't read from right to left. If I were you I would present as below:

(6)r6c5=(67)r6c18/r5c1-(267)r5c3/r6c18=(12)r5c3/r6c2-(12=6)r4c3*-r4c78=(67)r5c7/r6c8-(38=8)r5c467 => r4c56, r5c6<>6
or
(X-wing 6’s:r25c36)=(6)r4c36-r4c78=(67)r5c17/r6c8-(267)r5c3/r6c8=(12)r5c3/r6c12-(12=6)r4c3 => r5c1<>6

totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: diamond puzzle

Postby P.O. » Fri Aug 20, 2021 4:59 am

Code: Select all
two steps:

 3        1258     1245     12589    15789    12789     24579     2479     6                 
 26       7        1256     1259     4        1269      2359      8        35               
 2468     258      9        258      5678     3         2457      247      1                 
 5        1239    e(1-26)   7        13689    14689     23468     2346     348               
a-6+7     4       e(16-7)   138      2        168      b36-78     5        9                 
d*2×679  d*239     8        349      369      5         1        c-2346+7  34               
 1        589      457      6        35789    4789      34589     349      2                 
 24789    2589     3        124589   15789    124789    45689     1469     458               
 2489     6        245      1234589  13589    12489     34589     1349     7                 


depth: 3  candidate: 6  from cell
(((6 1 4) (2 6 7 9)))

((6 0) (5 1 4) (6 7))                                if R5C1 is not 6
((7 0) (5 1 4) (6 7))                                it is 7
((7 1 1) (6 8 6) (2 3 4 6 7))                        R6C8 is 7
((2 2 1 11) ((6 1 4) (2 6 7 9)) ((6 2 4) (2 3 9)))   one of R6C1 or R6C2 is 2
((6 3 2 32) ((4 3 4) (1 2 6)) ((5 3 4) (1 6 7)))     a pair: one is 6


 3        1258     1245     12589    15789    12789    24579    2479     6                 
 26       7        1256     1259     4        1269     2359     8        35               
b24-68    258      9        258     c5+678    3        2457     247      1                 
 5        1239    g+1-2-6   7        13689    14689    23468    2346     348               
a+6-7     4       g-1-6+7   138      2        168      36×78    5        9                 
f*2×79   f*239     8        349     d3-69     5        1       e-234+67  34               
 1        589      457      6        35789    4789     34589    349      2                 
 24789    2589     3        124589   15789    124789   45689    1469     458               
 2489     6        245      1234589  13589    12489    34589    1349     7                 

depth: 4  candidate: 7  from cells
(((5 7 6) (3 6 7 8)) ((6 1 4) (2 7 9)))

((7 0) (5 1 4) (6 7))                                if R5C1 is not 7
((6 0) (5 1 4) (6 7))                                it is 6
((6 1 1) (3 5 2) (5 6 7 8))                          R3C5 is 6
((6 2 1) (6 8 6) (2 3 4 6 7))                        R6C8 is 6
((2 3 1 11) ((6 1 4) (2 7 9)) ((6 2 4) (2 3 9)))     one of R6C1 or R6C2 is 2
((7 4 22) (5 3 4) (1 6 7))                           R5C3 is 7 from a pair

ste.

P.O.
 
Posts: 1732
Joined: 07 June 2021

Re: diamond puzzle

Postby urhegyi » Fri Aug 20, 2021 8:10 am

I found another interesting diamond:
Image
Code: Select all
..8..2....3..6..7.6..9....4.6.1....5..9...8..3....4.6.2....3..9.7..8..5....5..1.. ED=6.7/6.7/6.7
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: diamond puzzle

Postby denis_berthier » Fri Aug 20, 2021 9:19 am

.
The second puzzle has a solution in 4 non-W1 steps using only Subsets and Finned-Fish:
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 14579 1459  8     ! 347   13457 2     ! 3569  139   136   !
   ! 1459  3     1245  ! 48    6     158   ! 259   7     128   !
   ! 6     125   1257  ! 9     1357  1578  ! 235   1238  4     !
   +-------------------+-------------------+-------------------+
   ! 478   6     247   ! 1     2379  789   ! 23479 2349  5     !
   ! 1457  1245  9     ! 2367  2357  567   ! 8     1234  1237  !
   ! 3     1258  1257  ! 278   2579  4     ! 279   6     127   !
   +-------------------+-------------------+-------------------+
   ! 2     1458  1456  ! 467   147   3     ! 467   48    9     !
   ! 149   7     1346  ! 246   8     169   ! 2346  5     236   !
   ! 489   489   346   ! 5     2479  679   ! 1     2348  23678 !
   +-------------------+-------------------+-------------------+

finned-swordfish-in-columns: n8{c9 c4 c1}{r9 r2 r6} ==> r6c2≠8
singles ==> r4c1=8, r6c4=8, r2c4=4
finned-swordfish-in-columns: n7{c4 c1 c7}{r7 r1 r5} ==> r5c9≠7
finned-swordfish-in-columns: n9{c2 c8 c5}{r9 r1 r4} ==> r4c6≠9
singles ==> r4c6=7, r5c1=7, r3c3=7
whip[1]: c1n5{r2 .} ==> r1c2≠5, r2c3≠5, r3c2≠5
whip[1]: c6n9{r9 .} ==> r9c5≠9
naked-pairs-in-a-block: b1{r2c3 r3c2}{n1 n2} ==> r2c1≠1, r1c2≠1, r1c1≠1
stte

There are also solutions in 2 non-W1 steps, using only a Finned-Fish and a bivalue-chain[3], e.g.:
finned-swordfish-in-rows: n8{r7 r6 r3}{c8 c2 c4} ==> r2c4≠8
singles ==> r2c4=4, r6c4=8, r4c1=8
biv-chain[3]: r9c1{n9 n4} - b1n4{r1c1 r1c2} - c2n9{r1 r9} ==> r9c6≠9, r9c5≠9, r8c1≠9
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: diamond puzzle

Postby jco » Fri Aug 20, 2021 12:08 pm

Hi totuan!
totuan wrote:
jco wrote:
Code: Select all
.------------------------------------------------------------------.
| 3      1258   1245 | 12589    15789  12789  | 24579  2479    6   |
| 26     7      1256 | 1259     4      1269   | 2359   8       35  |
| 2468   258    9    | 258      5678   3      | 2457   247     1   |
|--------------------+------------------------+--------------------|
| 5      139-2 d126  | 7        1389-6 1489-6 |c23468 c2346   b348 |
|a67     4     a167  | 138      2      18-6   |b3678   5       9   |
| 2679   239    8    | 349      369    5      | 1      267-34 b34  |
|--------------------+------------------------+--------------------|
| 1      589    457  | 6        35789  4789   | 34589  349     2   |
| 24789  2589   3    | 124589   15789  124789 | 45689  1469    458 |
| 2489   6      245  | 1234589  13589  12489  | 34589  1349    7   |
'------------------------------------------------------------------'

(1=67)r5c13 - (67=348)b6p349 - (348=26)r4c78 - (2|6=1)r4c3 - loop => -(34)r6c8, -6 b5p236, -2 r4c2; ste

Maybe I'm wrong, but I don't see the loop here - can't read from right to left. If I were you I would present as below:

(6)r6c5=(67)r6c18/r5c1-(267)r5c3/r6c18=(12)r5c3/r6c2-(12=6)r4c3*-r4c78=(67)r5c7/r6c8-(38=8)r5c467 => r4c56, r5c6<>6
or
(X-wing 6’s:r25c36)=(6)r4c36-r4c78=(67)r5c17/r6c8-(267)r5c3/r6c8=(12)r5c3/r6c12-(12=6)r4c3 => r5c1<>6

totuan

Thank you for this observation and for the suggested moves!
My attempt at reading the chain from right to left:

if 1 is false at r4c4, then 2 or 6 must be true there, so 2|6 is false at r4c78, i.e, 2 false and 6 false at that cell.
This implies that 348 is locked there, so 3|4|8 is false at b6p349, i.e., 3 false, 4 false and 8 false there, so
67 is locked there, so 6|7 is false at r5c13, i.e., 6 false and 7 false there so 1 must be there. This in turn implies that 1 is false at r4c4 ... loop

Let me explain the Sudoku move (loop) in words (in the way I found it):
if 1 is false at r5c13, then 67 is locked there, implying that it cannot be
at r5c7, thus making 348 locked at b6p349, which in turn implies that 348 cannot be at r4c78, leaving
26 locked there, and this implies that 26 is false at r4c3, so 1 must be there; but this implies that 1 cannot be
at r5c13, leaving 67 locked there ... loop.
@Cenoman: please help me to write this loop in a proper way if something is missing!

Edit: improved the text.
Edit 2: thank you eleven for sharing that way of writing the loop!
(also the description of it and additional eliminations that I missed).
I made corrections accordingly in my first post.
Last edited by jco on Fri Aug 20, 2021 5:26 pm, edited 4 times in total.
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: diamond puzzle

Postby eleven » Fri Aug 20, 2021 1:33 pm

My way:
(1=67)r5c13 - (6|7=348)b6p349 - (3|4|8=126)r4c378, loop

btw you missed -1r12c3, r4c2.

Reading from right to left:
if r4c378 is not 126, one of 348 must be there (in r4c78),
then there cant be a triple 348 in b6p349 and one of 67 must be there (in r4c7),
then there can't be a pair 67 in r5c13, and 1 must be there,
( then 126 can't be in r4c378 ..., loop )
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: diamond puzzle

Postby P.O. » Fri Aug 20, 2021 3:14 pm

Code: Select all
two steps also for the second one:

 14579  1459    8      347    13457  2      3569    139    136             
 1459   3       1245   48     6      158    259     7      128             
 6      125     1257   9      1357  f157+8  235    e123-8  4               
a47-8   6       247    1      2379   7×89   23479   2349   5               
 1457   1245    9      2367   2357   567    8       1234   1237           
 3      1258    1257   278    2579   4      279     6      127             
 2     c145-8   1456   467    147    3      467    d4+8    9               
 149    7       1346   246    8      169    2346    5      236             
b4+89   489     346    5      2479   679    1       2348   23678           

depth: 2  candidate: 8  from cell
(((4 6 5) (7 8 9)))

((8 0) (4 1 4) (4 7 8))
((8 0) (9 1 7) (4 8 9))
((8 1 1) (7 8 9) (4 8))
((8 2 1) (3 6 2) (1 5 7 8))

singles:
( r2c4b2 n4  r4c1b4 n8  r6c4b5 n8 )

c1+4579  b1-45+9   8      37     1357   2      3569   139    136             
 159      3        125    4      6      158    259    7      128             
 6        125      1257   9      1357   1578   235    1238   4               
 8        6        247    1      2379   79     23479  2349   5               
 1457     1245     9      2367   2357   567    8      1234   1237           
 3        125      1257   8      2579   4      279    6      127             
 2        1458     1456   67     147    3      467    48     9               
 14×9     7        1346   26     8      169    2346   5      236             
d-4+9    a48-9     346    5      247×9  67×9   1      2348   23678           

depth: 2  candidate: 9  from cells
(((8 1 7) (1 4 9)) ((9 5 8) (2 4 7 9)) ((9 6 8) (6 7 9)))

((9 0) (9 2 7) (4 8 9))
((9 0) (1 2 1) (1 4 5 9))
((4 1 10) (1 1 1) (1 4 5 7 9))
((9 2 9) (9 1 7) (4 9))

ste.

P.O.
 
Posts: 1732
Joined: 07 June 2021

Re: diamond puzzle

Postby totuan » Fri Aug 20, 2021 5:00 pm

Hi eleven & jco,
Thanks for reply, now I see the loop but a bit defferent :D
Code: Select all
 *--------------------------------------------------------------------------------------*
 | 3        1258     245-1    | 12589    15789    12789    | 24579    2479     6        |
 | 26       7        256-1    | 1259     4        1269     | 2359     8        35       |
 | 2468     258      9        | 258      5678     3        | 2457     247      1        |
 |----------------------------+----------------------------+----------------------------|
 | 5        39-12   126       | 7        13689    14689    | 23468    2346     348      |
 | 67       4        167      | 138      2        168      | 3678     5        9        |
 | 279-6    239      8        | 349      369      5        | 1        27-346   34       |
 |----------------------------+----------------------------+----------------------------|
 | 1        589      457      | 6        35789    4789     | 34589    349      2        |
 | 24789    2589     3        | 124589   15789    124789   | 45689    1469     458      |
 | 2489     6        245      | 1234589  13589    12489    | 34589    1349     7        |
 *--------------------------------------------------------------------------------------*

(2)r4c78=(2-7)r6c8=(7)r5c7-(7=16)r5c13-(16=2)r4c3 => loop => r4c2<>2
And all weaklinks => stronglinks: (2-7)r6c8 => r6c8<>346; (7=16)r5c13-(16=2)r4c3 => r4c2,r12c3<>1, r6c1<>6

totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: diamond puzzle

Postby eleven » Fri Aug 20, 2021 8:17 pm

Ah nice, this one needs only the 167-ALS.

@urhegyi
Please don't post two puzzles in the same thread here, that can become confusing.

In the second one i like the link 8r9c12 = 4r78c4:
49 in r9c12 both kills the 9 in the ALS 24679 b8b1489, so the other digits must be there, and the 4r9c5, so the 4 only can be in r78c4.
(The other way: if 4 is not in r78c4, either 4r9c5 or 9r9c56 -> one of r9c12 must be 8)

Maybe someone has a good idea how to notate that.
Code: Select all
 *---------------------------------------------------------------------------*
 |  14579   1459   8      |  347    13457   2      |  3569    139    136     |
 |  1459    3      1245   | b48     6       158    |  259     7      128     |
 |  6       125    1257   |  9      1357    1578   |  235     1238   4       |
 |------------------------+------------------------+-------------------------|
 |  478     6      247    |  1      2379    789    |  23479   2349   5       |
 |  1457    1245   9      |  2367   2357    567    |  8       1234   1237    |
 |  3      d1258   1257   | c278    2579    4      |  279     6      127     |
 |------------------------+------------------------+-------------------------|
 |  2       145-8  1456   | #467    147     3      |  467     48     9       |
 |  149     7      1346   | #246    8       169    |  2346    5      236     |
 |  a49+8  a49+8   346    |  5     #2479   #679    |  1       2348   23678   |
 *---------------------------------------------------------------------------*

8r9c12 == 4r78c4 - (4=8)r2c4 - r6c4 = 8r6c2, -8r7c2, stte

[Edit:]typo correted, tkx jco
Last edited by eleven on Fri Aug 20, 2021 11:11 pm, edited 1 time in total.
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: diamond puzzle

Postby jco » Fri Aug 20, 2021 9:48 pm

Hi eleven
Nice solution!
eleven wrote:(...)
In the second one i like the link 8r9c12 = 4r78c4:
49 in r9c12 both kills the 9 in the ALS 24679 b8b3689, so the other digits must be there, and the 4r9c5, so the 4 only can be in r78c4.
(The other way: if 4 is not in r78c4, either 4r9c5 or 9r9c56 -> one of r9c12 must be 8)
Maybe someone has a good idea how to notate that.
(..)

Here is my attempt:
(8=49)r9c12-(4|9)r9c56=(91b8p26 & 4r78c4)
(for the last part, 9 has to be at r8c6,1 at r7c5, and (4)r78c4).
=> (8)r9c12=(4)r78c4
(Btw small typo in the location of your ALS: b8p1489.)

[(8=49)r9c12-(4|9)r9c56=(91b8p26 & 4r78c4)-(4=8)r2c4 etc; but the link is not made explicit when written this way]

Edit: improved my attempt (thanks to Cenoman!).
Last edited by jco on Thu Aug 26, 2021 9:28 pm, edited 1 time in total.
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: diamond puzzle

Postby Cenoman » Fri Aug 20, 2021 10:58 pm

First puzzle. (Inspired by JCO's set of cells)
Code: Select all
 +------------------------+-----------------------------+------------------------+
 |  3       1258   1245   |  12589     15789   12789    |  24579   2479    6     |
 |  26      7      1256   |  1259      4       1269     |  2359    8       35    |
 |  2468    258    9      |  258       5678    3        |  2457    247     1     |
 +------------------------+-----------------------------+------------------------+
 |  5      b39-12 a126    |  7         13689   14689    | d23468  d2346    348   |
 |  67      4      167    |  138       2       168      |  3678    5       9     |
 | b279-6  b239    8      |  349       369     5        |  1      c27-346  34    |
 +------------------------+-----------------------------+------------------------+
 |  1       589    457    |  6         35789   4789     |  34589   349     2     |
 |  24789   2589   3      |  124589    15789   124789   |  45689   1469    458   |
 |  2489    6      245    |  1234589   13589   12489    |  34589   1349    7     |
 +------------------------+-----------------------------+------------------------+

AHS loop: (2)r4c3 = (239-7)b4p278 = (7-2)r6c8 = (2)r4c78 loop => -12 r4c2, -346 r6c8, -6r6c1; ste

The ugly form:
Hidden Text: Show
Doubly linked ALS-XZ rule:
(1267)b4p346, (234678)b6p12349 with RC's 2,7 => -12 r4c2, -346 r6c8, -6r6c1; ste


Second puzzle:
Code: Select all
 +------------------------+------------------------+-------------------------+
 |  14579   1459   8      |  347    13457   2      |  3569    139    136     |
 |  1459    3      1245   | c48     6       158    |  259     7      128     |
 |  6       125    1257   |  9      1357    1578   |  235     1238   4       |
 +------------------------+------------------------+-------------------------+
 |  478     6      247    |  1      2379    789    |  23479   2349   5       |
 |  1457    1245   9      |  2367   2357    567    |  8       1234   1237    |
 |  3      e1258   1257   | d278    2579    4      |  279     6      127     |
 +------------------------+------------------------+-------------------------+
 |  2       145-8  1456   | b467   a147*    3      |  467    a48*    9       |
 |  149     7      1346   | b246    8       169    |  2346    5      236     |
 | a489*   a489*   346    |  5     a2479*   679    |  1       2348   23678   |
 +------------------------+------------------------+-------------------------+

Almost ALS W-Wing:
[(8=4)r7c8 - r7c5*=*r9c5 - (4=98)r9c12] = (4)r78c4 - (4=8)r2c4 - r6c4 = (8)r6c2 => -8r7c2; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Next

Return to Puzzles