by denis_berthier » Fri Sep 18, 2020 4:38 pm
There's a solution with Subsets and nothing more complex than Typed bivalue-chains[3], but I also found one with an oddagon[7]:
(solve "...8....1..9.7..2..1...5..4..2.4..5.9..3..6...8.....7.7.......8.6.4.1.9...5.2....")
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = O+S
*** Using CLIPS 6.32-r770
***********************************************************************************************
singles ==> r5c9 = 2, r2c4 = 1
193 candidates, 1098 csp-links and 1098 links. Density = 5.93%
whip[1]: c9n7{r9 .} ==> r9c7 ≠ 7, r8c7 ≠ 7
singles ==> r8c9 = 7, r2c9 = 5, r9c9 = 6
whip[1]: c9n3{r6 .} ==> r4c7 ≠ 3, r6c7 ≠ 3
whip[1]: c9n9{r6 .} ==> r6c7 ≠ 9, r4c7 ≠ 9
hidden-pairs-in-a-column: c7{n2 n5}{r7 r8} ==> r8c7 ≠ 3, r7c7 ≠ 4, r7c7 ≠ 3, r7c7 ≠ 1
hidden-pairs-in-a-column: c7{n7 n9}{r1 r3} ==> r3c7 ≠ 8, r3c7 ≠ 3, r1c7 ≠ 3
swordfish-in-columns: n8{c3 c5 c8}{r3 r8 r5} ==> r8c1 ≠ 8, r5c6 ≠ 8, r3c1 ≠ 8
singles ==> r5c6 = 7, r9c4 = 7, r4c2 = 7
oddagon[7]: r4n1{c1 c7},r4c7{n1 n8},r4n8{c7 c6},c6n8{r4 r9},r9n8{c6 c1},r9c1{n8 n1},c1n1{r9 r4} ==> r9c1 ≠ 1
singles ==> r7c3 = 1, r5c3 = 4, r5c2 = 5, r1c1 = 5, r6c7 = 4
hidden-pairs-in-a-row: r1{n2 n4}{c2 c6} ==> r1c6 ≠ 9, r1c6 ≠ 6, r1c6 ≠ 3, r1c2 ≠ 3
hidden-pairs-in-a-column: c1{n4 n8}{r2 r9} ==> r9c1 ≠ 3, r2c1 ≠ 6, r2c1 ≠ 3
singles and whips[1] to the end