SER 8.3
It can be solved with chains no longer than 4, but it's not an easy one.
(solve "87..9621.251..8.699..12...7.3...2..1.......2.4.28...3.3..2.16.862.9..14.1.56...72")
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = TyW+B+gW+SFin
*** Download from:
https://github.com/denis-berthier/CSP-Rules-V2.1***********************************************************************************************
- Code: Select all
Starting non trivial part of solution with the following RESOLUTION STATE:
8 7 34 345 9 6 2 1 345
2 5 1 347 347 8 34 6 9
9 46 346 1 2 345 3458 58 7
57 3 6789 457 4567 2 45789 589 1
57 1689 6789 3457 134567 34579 45789 2 456
4 169 2 8 1567 579 579 3 56
3 49 479 2 457 1 6 59 8
6 2 78 9 3578 357 1 4 35
1 489 5 6 348 34 39 7 2
130 candidates, 642 csp-links and 642 links. Density = 7.66%
whip[1]: c1n7{r5 .} ==> r5c3 ≠ 7, r4c3 ≠ 7
93 g-candidates, 378 csp-glinks and 237 non-csp glinks
biv-chain[4]: r5n1{c5 c2} - c2n8{r5 r9} - r8c3{n8 n7} - r7n7{c3 c5} ==> r5c5 ≠ 7
z-chain[4]: c9n4{r5 r1} - r1n5{c9 c4} - r3c6{n5 n3} - r9c6{n3 .} ==> r5c6 ≠ 4
z-chain[4]: c9n3{r8 r1} - r1n5{c9 c4} - r3c6{n5 n4} - r9c6{n4 .} ==> r8c6 ≠ 3
whip[4]: c9n4{r5 r1} - r1n5{c9 c4} - c4n3{r1 r2} - r2c7{n3 .} ==> r5c4 ≠ 4
g-whip[4]: r9c7{n9 n3} - r2n3{c7 c456} - c6n3{r3 r5} - c6n9{r5 .} ==> r6c7 ≠ 9
t-whip[4]: r6n9{c6 c2} - c3n9{r5 r7} - r7n7{c3 c5} - r8c6{n7 .} ==> r6c6 ≠ 5
finned-x-wing-in-rows: n5{r7 r6}{c5 c8} ==> r4c8 ≠ 5
t-whip-rn[4]: r6n5{c9 c5} - r7n5{c5 c8} - r8n5{c9 c6} - r3n5{c6 .} ==> r5c7 ≠ 5, r4c7 ≠ 5
t-whip[4]: r8c6{n7 n5} - r7n5{c5 c8} - r3n5{c8 c7} - r6c7{n5 .} ==> r6c6 ≠ 7
naked-single ==> r6c6 = 9
naked-triplets-in-a-row: r5{c1 c4 c6}{n7 n5 n3} ==> r5c9 ≠ 5, r5c7 ≠ 7, r5c5 ≠ 5, r5c5 ≠ 3
whip[1]: b6n5{r6c9 .} ==> r6c5 ≠ 5
biv-chain[3]: r5n1{c5 c2} - r6c2{n1 n6} - b6n6{r6c9 r5c9} ==> r5c5 ≠ 6
biv-chain-bn[4]: b9n9{r9c7 r7c8} - b9n5{r7c8 r8c9} - b6n5{r6c9 r6c7} - b6n7{r6c7 r4c7} ==> r4c7 ≠ 9
biv-chain[4]: r1n5{c4 c9} - c7n5{r3 r6} - c7n7{r6 r4} - r4c1{n7 n5} ==> r4c4 ≠ 5
biv-chain[4]: r4c4{n4 n7} - b6n7{r4c7 r6c7} - c7n5{r6 r3} - b2n5{r3c6 r1c4} ==> r1c4 ≠ 4
biv-chain[3]: r3c2{n6 n4} - r1n4{c3 c9} - r5c9{n4 n6} ==> r5c2 ≠ 6
biv-chain[3]: c3n3{r3 r1} - r1n4{c3 c9} - r2c7{n4 n3} ==> r3c7 ≠ 3
finned-x-wing-in-columns: n3{c7 c5}{r2 r9} ==> r9c6 ≠ 3
naked-single ==> r9c6 = 4
whip[1]: b2n4{r2c5 .} ==> r2c7 ≠ 4
stte
Starting from the same PM, it can also be solved using only reversible chains (bivalue-chains and z-chains) but then length has to be up to 7:
biv-chain[4]: r5n1{c5 c2} - c2n8{r5 r9} - r8c3{n8 n7} - r7n7{c3 c5} ==> r5c5 ≠ 7
z-chain[4]: c9n4{r5 r1} - r1n5{c9 c4} - r3c6{n5 n3} - r9c6{n3 .} ==> r5c6 ≠ 4
z-chain[4]: c9n3{r8 r1} - r1n5{c9 c4} - r3c6{n5 n4} - r9c6{n4 .} ==> r8c6 ≠ 3
z-chain[5]: c9n4{r5 r1} - r1n5{c9 c4} - c4n3{r1 r2} - r2c7{n3 n4} - r4n4{c7 .} ==> r5c4 ≠ 4
z-chain[7]: b8n3{r9c5 r9c6} - c6n4{r9 r3} - r2c5{n4 n7} - r7n7{c5 c3} - r8c3{n7 n8} - c2n8{r9 r5} - r5n1{c2 .} ==> r5c5 ≠ 3
z-chain[6]: b2n5{r1c4 r3c6} - r8c6{n5 n7} - r8c3{n7 n8} - r9n8{c2 c5} - c5n3{r9 r8} - c9n3{r8 .} ==> r1c4 ≠ 3
z-chain[3]: b1n4{r3c3 r1c3} - r1n3{c3 c9} - r2c7{n3 .} ==> r3c7 ≠ 4
z-chain[4]: r9c6{n4 n3} - b9n3{r9c7 r8c9} - r1n3{c9 c3} - b1n4{r1c3 .} ==> r3c6 ≠ 4
hidden-single-in-a-column ==> r9c6 = 4
whip[1]: b8n3{r9c5 .} ==> r2c5 ≠ 3
whip[1]: r3n4{c3 .} ==> r1c3 ≠ 4
stte