- Code: Select all
+---+---+---+
|74.|.98|5..|
|8.9|..6|...|
|.65|.7.|...|
+---+---+---+
|...|.69|.5.|
|9..|7..|...|
|65.|84.|.97|
+---+---+---+
|...|6.4|8..|
|5..|...|41.|
|4..|...|.3.|
+---+---+---+
Definitely Maybe !
+---+---+---+
|74.|.98|5..|
|8.9|..6|...|
|.65|.7.|...|
+---+---+---+
|...|.69|.5.|
|9..|7..|...|
|65.|84.|.97|
+---+---+---+
|...|6.4|8..|
|5..|...|41.|
|4..|...|.3.|
+---+---+---+
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 7 4 123 ! 123 9 8 ! 5 26 1236 !
! 8 123 9 ! 12345 1235 6 ! 1237 247 1234 !
! 123 6 5 ! 1234 7 123 ! 1239 248 123489 !
+----------------------+----------------------+----------------------+
! 123 12378 123478 ! 123 6 9 ! 123 5 12348 !
! 9 1238 12348 ! 7 1235 1235 ! 1236 2468 123468 !
! 6 5 123 ! 8 4 123 ! 123 9 7 !
+----------------------+----------------------+----------------------+
! 123 12379 1237 ! 6 1235 4 ! 8 27 259 !
! 5 23789 23678 ! 239 238 237 ! 4 1 269 !
! 4 12789 12678 ! 1259 1258 1257 ! 2679 3 2569 !
+----------------------+----------------------+----------------------+
196 candidates.
Trid-OR3-relation for digits 1, 3 and 2 in blocks:
b1, with cells (marked #): r1c3, r2c2, r3c1
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r6c3, r5c2, r4c1
b5, with cells (marked #): r6c6, r5c5, r4c4
with 3 guardians (in cells marked @): n5r2c5 n8r5c2 n5r5c5
+----------------------+----------------------+----------------------+
! 7 4 123# ! 123# 9 8 ! 5 26 1236 !
! 8 123# 9 ! 12345 1235#@ 6 ! 1237 247 1234 !
! 123# 6 5 ! 1234 7 123# ! 1239 248 123489 !
+----------------------+----------------------+----------------------+
! 123# 78 478 ! 123# 6 9 ! 123 5 48 !
! 9 1238#@ 12348 ! 7 1235#@ 1235 ! 1236 2468 123468 !
! 6 5 123# ! 8 4 123# ! 123 9 7 !
+----------------------+----------------------+----------------------+
! 123 12379 1237 ! 6 1235 4 ! 8 27 259 !
! 5 23789 23678 ! 239 238 237 ! 4 1 269 !
! 4 12789 12678 ! 1259 1258 1257 ! 2679 3 2569 !
+----------------------+----------------------+----------------------+
+----------------------+----------------------+----------------------+
! 7 4 3 ! 123 9 8 ! 5 1236 1236 !
! 8 2 9 ! 12345 1235 6 ! 1237 12347 1234 !
! 1 6 5 ! 1234 7 123 ! 1239 12348 123489 !
+----------------------+----------------------+----------------------+
! 123 78 478 ! 123 6 9 ! 123 5 48 !
! 9 1238 12348 ! 7 1235 1235 ! 1236 123468 123468 !
! 6 5 123 ! 8 4 123 ! 123 9 7 !
+----------------------+----------------------+----------------------+
! 123 1239 1237 ! 6 1235 4 ! 8 1237 12359 !
! 5 123789 123678 ! 1239 1238 1237 ! 4 123 12369 !
! 4 123789 123678 ! 12359 12358 12357 ! 123679 123 123569 !
+----------------------+----------------------+----------------------+
coloin wrote:I understand eleven's clever replacement method...its logical![]()
You could also try all six ways to put the 1-2-3 clues in box 1..and see how it solves [] That would be logical too !
coloin wrote:I thought the pattern unusual and couldnt advance on it .....I wonder what others can do with it ?
,-------------------,-------------------,--------------------,
| 7 4 #123 |#123 9 8 | 5 26 1236 |
| 8 *123 9 | 12345 *1235 6 | 1237 247 1234 |
|#123 6 5 | 1234 7 #123 | 1239 248 123489 |
:-------------------+-------------------+--------------------:
|#123 78 478 |#123 6 9 | 123 5 48 |
| 9 *1238 12348 | 7 *1235 1235 | 1236 2468 123468 |
| 6 5 #123 | 8 4 #123 | 123 9 7 |
:-------------------+-------------------+--------------------:
|B123 12379 B7–123 | 6 1235 4 | 8 27 259 |
| 5 23789 23678 | 239 T238 237 | 4 1 269 |
| 4 12789 12678 | 1259 T128–5 1257 | 2679 3 2569 |
'-------------------'-------------------'--------------------'
,------------------,-------------------,----------------,
| 7 4 #123 |#123 9 8 | 5 6 123 |
| 8 y*13–2 9 | 12345 *1235 6 |x13–2 7 1234 |
|#123 6 5 | 1234 7 #123 | 9 48 12348 |
:------------------+-------------------+----------------:
|#123 7 48 |#123 6 9 | 123 5 48 |
| 9 *8–213 12348 | 7 *25–13 25–13| 6 48 x13–2 |
| 6 5 #123 | 8 4 #123 | 123 9 7 |
:------------------+-------------------+----------------:
|B13 139 7 | 6 135 4 | 8 2 59 |
| 5 2389 2368 | 239 T38–2 7 | 4 1 69 |
| 4 1289 1268 | 1259 T18–2 125 | 7 3 569 |
'------------------'-------------------'----------------'
,--------------,--------------,--------------,
| 7 4 af13–2| 123 9 8 | 5 6 123 |
| 8 y13 9 | 245 25 6 |x13 7 24 |
|b123 6 5 | 1234 7 c13 | 9 8 1234 |
:--------------+--------------+--------------:
| 123 7 4 | 13 6 9 | 123 5 8 |
| 9 8 y13 | 7 25 25 | 6 4 x13 |
| 6 5 e123 | 8 4 d13 | 123 9 7 |
:--------------+--------------+--------------:
| 13 9 7 | 6 13 4 | 8 2 5 |
| 5 23 68 | 29 38 7 | 4 1 69 |
| 4 12 68 | 259 18 25 | 7 3 69 |
'--------------'--------------'--------------'
,------------,-------------,------------,
| 7 4 13 | 123 9 8 | 5 6 123 |
| 8 13 9 | 245 25 6 |#13 7 24 |
| 2 6 5 | 134 7 #13 | 9 8 4–13|
:------------+-------------+------------:
| 13 7 4 | 13 6 9 | 2 5 8 |
| 9 8 13 | 7 25 25 | 6 4 13 |
| 6 5 2 | 8 4 #13 |#13 9 7 |
:------------+-------------+------------:
| 13 9 7 | 6 13 4 | 8 2 5 |
| 5 23 68 | 29 38 7 | 4 1 69 |
| 4 12 68 | 259 18 25 | 7 3 69 |
'------------'-------------'------------'
marek stefanik wrote:Following a T&E procedure, it is easy to express every step with resolution.
I could therefore say that whenever you use T&E, you are implicitly doing resolution.
marek stefanik wrote:You looking at a solution using eleven's method and saying: "Actually, that's T&E(11)."
marek stefanik wrote:The whips in your path after relabeling don't even translate to eliminations in the original puzzle.
denis berthier wrote:finned-x-wing-in-rows: n1{r4 r1}{c4 c7} ==> r2c7≠1
biv-chain[4]: r4n1{c7 c4} - r1c4{n1 n2} - r3c6{n2 n3} - r6n3{c6 c7} ==> r6c7≠1, r4c7≠3
biv-chain[5]: c1n2{r7 r4} - r4n3{c1 c4} - r6n3{c6 c7} - r2c7{n3 n7} - b9n7{r9c7 r7c8} ==> r7c8≠2
z-chain[5]: c7n1{r5 r9} - c7n6{r9 r5} - c8n6{r5 r1} - r1n1{c8 c4} - r4n1{c4 .} ==> r5c9≠1
t-whip[5]: r6c3{n1 n2} - r6c7{n2 n3} - r2c7{n3 n7} - c8n7{r2 r7} - r7c3{n7 .} ==> r8c3≠1, r9c3≠1, r5c3≠1
whip[5]: r3c6{n2 n3} - r6c6{n3 n1} - b4n1{r6c3 r5c2} - b4n3{r5c2 r4c1} - r4c4{n3 .} ==> r5c6≠2
whip[6]: r1c4{n2 n1} - r4c4{n1 n3} - b4n3{r4c1 r5c2} - b4n1{r5c2 r6c3} - r6c6{n1 n2} - b2n2{r3c6 .} ==> r9c4≠2
whip[6]: r1c4{n2 n1} - r4c4{n1 n3} - b4n3{r4c1 r5c2} - b4n1{r5c2 r6c3} - r6c6{n1 n2} - b2n2{r3c6 .} ==> r8c4≠2
whip[6]: r3c6{n2 n3} - r6n3{c6 c7} - r6n2{c7 c3} - b4n1{r6c3 r5c2} - r5n3{c2 c5} - c5n2{r5 .} ==> r9c6≠2
t-whip[6]: b8n2{r9c5 r8c6} - r3c6{n2 n3} - r6c6{n3 n1} - r6c3{n1 n2} - r4c1{n2 n3} - r4c4{n3 .} ==> r5c5≠2
whip[1]: c5n2{r9 .} ==> r8c6≠2
t-whip[5]: r6c7{n3 n2} - r5n2{c9 c3} - r6c3{n2 n1} - r7c3{n1 n7} - b9n7{r7c8 .} ==> r9c7≠3
t-whip[5]: r4c7{n1 n2} - r5n2{c9 c3} - r6c3{n2 n1} - r7c3{n1 n7} - b9n7{r7c8 .} ==> r9c7≠1
whip[1]: c7n1{r5 .} ==> r5c8≠1
t-whip[6]: r5n2{c9 c3} - r6c3{n2 n1} - r7c3{n1 n7} - c8n7{r7 r2} - r2c7{n7 n3} - r6c7{n3 .} ==> r4c7≠2
naked-single ==> r4c7=1
t-whip[6]: r6c7{n3 n2} - r5n2{c9 c3} - r6c3{n2 n1} - r7c3{n1 n7} - b9n7{r7c8 r9c7} - c7n6{r9 .} ==> r5c7≠3
t-whip[6]: r6c7{n3 n2} - r5n2{c9 c3} - r6c3{n2 n1} - r7c3{n1 n7} - b9n7{r7c8 r9c7} - c7n9{r9 .} ==> r3c7≠3
z-chain[4]: c7n3{r6 r2} - r2n7{c7 c8} - c8n4{r2 r3} - c8n8{r3 .} ==> r5c8≠3
whip[6]: r6c3{n2 n1} - r7c3{n1 n7} - c8n7{r7 r2} - r2c7{n7 n3} - r6c7{n3 n2} - r5n2{c9 .} ==> r9c3≠2
whip[6]: r6c3{n2 n1} - r7c3{n1 n7} - c8n7{r7 r2} - r2c7{n7 n3} - r6c7{n3 n2} - r5n2{c9 .} ==> r8c3≠2
whip[1]: b7n2{r7c3 .} ==> r7c5≠2, r7c9≠2
hidden-pairs-in-a-block: b8{n2 n8}{r8c5 r9c5} ==> r9c5≠5, r9c5≠3, r9c5≠1, r8c5≠3, r8c5≠1
z-chain[4]: b5n2{r4c4 r6c6} - r3c6{n2 n3} - c5n3{r2 r7} - c1n3{r7 .} ==> r4c4≠3
singles ==> r4c4=2, r1c4=1, r4c1=3, r7c1=2, r3c6=2, r3c7=9
coloin wrote:. or do you relabel the puzzle at the end based on the true box 9 ?
coloin wrote:.I also chose the puzzle because after assuming [ somehow] r5c5 isnt a 5 then you know that one or both the 5 @r2c5 or the 8@r5c2 are correct.. but no easy way [ for eleven !] to say which.