- Code: Select all
*-----------*
|..1|...|.7.|
|23.|...|...|
|...|29.|.1.|
|---+---+---|
|...|.46|5..|
|4.7|..5|..2|
|.68|...|..7|
|---+---+---|
|68.|5..|7.4|
|...|.2.|...|
|1..|..4|..5|
*-----------*
Play/Print this puzzle online
*-----------*
|..1|...|.7.|
|23.|...|...|
|...|29.|.1.|
|---+---+---|
|...|.46|5..|
|4.7|..5|..2|
|.68|...|..7|
|---+---+---|
|68.|5..|7.4|
|...|.2.|...|
|1..|..4|..5|
*-----------*
89 c49 1 |b46 5 38 | 2 7 36
2 3 46 | 146 a67 17 | 89 5 89
78 57 56 | 2 9 38 | 4 1 36
------------------------+----------------------+---------------------
39 c129 239 | 7 4 6 | 5 89 189
4 c19 7 | 139 8 5 | 1369 369 2
5 6 8 | 139 13 2 | 139 4 7
------------------------+----------------------+---------------------
6 8 239 | 5 13 19 | 7 239 4
379 45 45 | 368 2 79 | 13689 3689 189
1 c279 239 | 368 6-7 4 | 3689 23689 5
*-----------------------------------------------------------------------*
| 89 49 1 | 46 5 38 | 2 7 36 |
| 2 3 b46 | 146 a67 17 | 89 5 89 |
| 78 d57 c56 | 2 9 38 | 4 1 36 |
|-----------------------+-----------------------+-----------------------|
| 39 129 239 | 7 4 6 | 5 89 189 |
| 4 19 7 | 139 8 5 | 1369 369 2 |
| 5 6 8 | 139 13 2 | 139 4 7 |
|-----------------------+-----------------------+-----------------------|
| 6 8 239 | 5 13 19 | 7 239 4 |
| 379 45 45 | 368 2 79 | 13689 3689 189 |
| 1 f279 239 | 368 6-7 4 | 3689 23689 5 |
*-----------------------------------------------------------------------*
+-------------+-----------+-----------------+
| b89 b49 1 | b46 5 38 | 2 7 36 |
| 2 3 46 | 146 c67 17 | 89 5 89 |
| a78 57 56 | 2 9 38 | 4 1 36 |
+-------------+-----------+-----------------+
| 39 129 239 | 7 4 6 | 5 89 189 |
| 4 19 7 | 139 8 5 | 1369 369 2 |
| 5 6 8 | 139 13 2 | 139 4 7 |
+-------------+-----------+-----------------+
| 6 8 239 | 5 13 19 | 7 239 4 |
| 39-7 45 45 | 368 2 79 | 13689 3689 189 |
| 1 e279 239 | 368 d67 4 | 3689 23689 5 |
+-------------+-----------+-----------------+
+-------------------+-----------------+-----------------------+
| 89 49 1 | 46 5 38 | 2 7 36 |
| 2 3 4-6 | 146 a67 17 | 89 5 89 |
| 78 d57 d56 | 2 9 38 | 4 1 36 |
+-------------------+-----------------+-----------------------+
| 39 129 239 | 7 4 6 | 5 89 189 |
| 4 19 7 | 139 8 5 | 1369 369 2 |
| 5 6 8 | 139 13 2 | 139 4 7 |
+-------------------+-----------------+-----------------------+
| 6 8 239 | 5 13 19 | 7 239 4 |
| 379 45 45 | 368 2 79 | 13689 3689 189 |
| 1 c279 239 | 368 b67 4 | 3689 23689 5 |
+-------------------+-----------------+-----------------------+
.------------------.-----------------.-------------------.
| d89 9-4 1 | a46 5 38 | 2 7 36 |
| 2 3 d46 | 16-4 67 17 | 89 5 89 |
| d78 d57 d56 | 2 9 38 | 4 1 36 |
:------------------+-----------------+-------------------:
| c39 129 239 | 7 4 6 | 5 89 189 |
| 4 19 7 | 139 8 5 | 1369 369 2 |
| 5 6 8 | 139 13 2 | 139 4 7 |
:------------------+-----------------+-------------------:
| 6 8 239 | 5 b13 b19 | 7 239 4 |
| c379 45 45 | a368 2 b79 | 13689 3689 189 |
| 1 279 239 | a368 67 4 | 3689 23689 5 |
'------------------'-----------------'-------------------'
Cenoman wrote:(6=7)r2c5 - r9c5 = r9c2 - (75=6)r3c23 => -6 r2c3
bat999 wrote:Cenoman wrote:(6=7)r2c5 - r9c5 = r9c2 - (75=6)r3c23 => -6 r2c3
Hi
Your solution is OK but I think there's a typo.
This...
(6=7)r2c5 - r9c5 = r9c2 - (75=6)r3c23 => -6 r2c3
Should be this (imho)...
(6=7)r2c5 - r9c5 = r9c2 - (7=56)r3c23 => -6 r2c3; stte
Sudtyro2 wrote:... The important point is to keep track of the linking digits within the node...
bat999 wrote:
I would not include the "bystander" 5.
(6=7)r2c5 - r9c5 = r9c2 - (75=6)r3c23 => -6 r2c3
OK, these two I'm happy with for this puzzle.Cenoman wrote:... you would write (7=6)r3c23
Another angle is to consider an ALS as the assembly of a group of one digit and of the set of all the other digits in the ALS cells, that are then a naked set. You could call it an ANS (Almost Naked Set). From that POW you would write (7=56)r3c23...
I'm not convinced about this one but maybe you and SteveC are correct.Cenoman wrote:...(75=6)r3c23 is another way...
Cenoman wrote:Hi Steve and Bat,
I agree with Bat: I do not favor the omission of bystanders, because such a practise could not be extended to duale AHS. In the case of the grid above, writing (7-6)r3c169 would raise a lot of questions/comments, altough fully correct from the logics POW. I would write (7-386)r3c169 or even 7-AHT386)r3c169. When using AHS's locked digits must always be included in the notation for sake of legibility. I note ALS's the same way, with some freedom to place other digits right or left...
I agree with Steve: the linkings digits must in any case occupy the extreme positions (first and last ones) in the ALS brackets, in order to make the chains easier to read.
Aha, this says to me "NOT(7AND5) in r3c23 forces 6 in r3c23".bat999 wrote:I'mnotconvinced about this one...
(75=6)r3c23
SteveG48 wrote:
However, in some chains, the OR is clearly necessary for the chain to be valid, and the omission of it can be confusing.
SteveG48 wrote:
...we might have something like (a|b=cd)r1c23