December 30, 2015

Post puzzles for others to solve here.

December 30, 2015

Postby ArkieTech » Wed Dec 30, 2015 12:38 am

Code: Select all
 *-----------*
 |9..|.25|.6.|
 |.15|..8|...|
 |...|...|.89|
 |---+---+---|
 |..8|..7|4..|
 |.2.|.3.|.7.|
 |..3|5..|2..|
 |---+---+---|
 |84.|...|...|
 |...|6..|84.|
 |.5.|98.|..1|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: December 30, 2015

Postby pjb » Wed Dec 30, 2015 1:36 am

Code: Select all
 9       8       47     | 3      2      5      | 1      6      47     
 6       1       5      | 47     9      8      | 37     23     247   
 2347    37      247    | 147    167    16     | 5      8      9     
------------------------+----------------------+---------------------
a15      69      8      | 2      16     7      | 4     b159    3     
 45-1     2       49-1  | 8      3      19     |d69     7     c56     
l17      679     3      | 5      4      169    | 2      19     8     
------------------------+----------------------+---------------------
 8       4       1267   | 17     157   f23     |e3679   59     2567   
 237-1   379     1279   | 6      157   g23     | 8      4     h257   
k237     5       267    | 9      8      4      |i367   j23     1     

Getting a bit ridiculous:
(1=5)r4c1 - r4c8 = (5-6)r5c9* = (6-9)r5c7^ = (9-3)r7c7 = r7c6 - (3=2)r8c6 - (25=7)r8c9* - (67=3)r9c7^# - (3=2)r9c8 - (23=7)r9c1# - (7=1)r6c1 => -1 r5c13, r8c1; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: December 30, 2015

Postby SteveG48 » Wed Dec 30, 2015 2:03 am

Thanks, Phil. I needed that. I think I'll go get a glass of wine now.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 30, 2015

Postby Leren » Wed Dec 30, 2015 3:28 am

Code: Select all
*--------------------------------------------------------------------------------*
| 9       8      e47       | 3       2       5        | 1       6       47       |
| 6       1       5        |b47      9       8        |a37an    23      247      |
|d2347   d37     d247      |c147    c167     16       | 5       8       9        |
|--------------------------+--------------------------+--------------------------|
| 15      69f     8        | 2       16      7        | 4       159g    3        |
| 145     2       149      | 8       3       19       | 69      7       56       |
| 17dj    679e    3        | 5       4       169      | 2       19h     8        |
|--------------------------+--------------------------+--------------------------|
| 8       4       1267     | 17      157     23       | 3679    59      2567     |
| 1237    379     1279     | 6       157     23       | 8       4       257      |
| 237ck   5      f267      | 9       8       4        | 367bm   23      1        |
*--------------------------------------------------------------------------------*

7 r2c7 - r2c4 = r3c45 - r3c123 = r1c3 - r9c3;                                                                         - r9c3

7 r2c7                                - r9c7 = r9c1 - r6c1 = (7-6) r6c2 = (6-9) r4c2 = r4c8 - (9=1) r6c8 - (1=7) r6c1 - r9c1 = r9c7 - 7 r2c7 => - 7 r2c7; stte

Also ridiculous, but effective !

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: December 30, 2015

Postby ArkieTech » Wed Dec 30, 2015 12:49 pm

Code: Select all
 *-----------------------------------------------------------*
 | 9     8     47    | 3     2     5     | 1     6     47    |
 | 6     1     5     | 47    9     8     | 37    23    247   |
 | 2347  37    247   | 147   167   16    | 5     8     9     |
 |-------------------+-------------------+-------------------|
 | 15    69    8     | 2     16    7     | 4     159   3     |
 | 145   2     149   | 8     3     19    | 69    7     56    |
 | 17    679   3     | 5     4     169   | 2     19    8     |
 |-------------------+-------------------+-------------------|
 | 8     4     1267  | 17    157   23    | 3679  59    2567  |
 | 1237  379   1279  | 6     157   23    | 8     4     257   |
 | 237   5     267   | 9     8     4     | 367   23    1     |
 *-----------------------------------------------------------*
[(7=6)r6c168-(6=9)r356c6-(9=7)b4p1467]-[7r9c1=ss:7r19]-7r2c7|r78c9; ste


I was hoping someone would find something simple. JC where are you?
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: December 30, 2015

Postby JC Van Hay » Wed Dec 30, 2015 5:40 pm

I hope there are no typos :(

10 singles
LC(9B9), NP(23)r29c8; 2 singles
LC(6B6), HP(23)r78c6
*
XYWing(169)R4B5 -> r2c7=3; singles to the end of a unique solution.
Proof of the exclusion of 7r2c7 :
Code: Select all
+---------------------+-----------------+-------------------+
| 9       8     4(7)  | 3    2    5     | 1      6     4(7) |
| 6       1     5     | 47   9    8     | 3-7    23    247  |
| 234-7   37    247   | 147  167  16    | 5      8     9    |
+---------------------+-----------------+-------------------+
| 15      69    8     | 2    16   7     | 4      159   3    |
| 45(1)   2     49(1) | 8    3    (19)  | 69     7     56   |
| (+7-1)  69-7  3     | 5    4    16(9) | 2      (19)  8    |
+---------------------+-----------------+-------------------+
| 8       4     1267  | 17   157  23    | 3679   59    2567 |
| 123-7   379   1279  | 6    157  23    | 8      4     257  |
| 23(-7)  5     26(7) | 9    8    4     | 36(7)  23    1    |
+---------------------+-----------------+-------------------+
In English :
    r2c7=7 -> r1c3=r9c1=7, r6c1=r5c6=1, r6c6=9; r6c8={}
Therefore, {7R19, 1R5, 9C6, (17)r6c1, (19)r6c8} -> r2c7≠7; stte
However : Wing(1R5, 9C6, (19)r6c8) -> r6c1=7 -> Skyscraper(7R19)-7r2c7; stte
This is a 2 steps solution!
*
To get a single-stepper avoiding r6c1=7, the following combination of constraints is possible :
Code: Select all
+---------------------+---------------+--------------------+
| 9      8      4(7)  | 3    2    5   | 1      6      4(7) |
| 6      1      5     | 47   9    8   | 3-7    23     247  |
| 2347   (37)   247   | 147  167  16  | 5      8      9    |
+---------------------+---------------+--------------------+
| 15     6(9)   8     | 2    16   7   | 4      15(9)  3    |
| 145    2      149   | 8    3    19  | 69     7      56   |
| (17)   679    3     | 5    4    169 | 2      (19)   8    |
+---------------------+---------------+--------------------+
| 8      4      1267  | 17   157  23  | 3679   59     2567 |
| 1237   (379)  1279  | 6    157  23  | 8      4      257  |
| 23(7)  5      26(7) | 9    8    4   | 36(7)  23     1    |
+---------------------+---------------+--------------------+
In English :
    r2c7=7 -> r1c3=r9c1=7, r3c2=3 and r6c1=1, r6c8=r4c2=9; r8c2={}
In exclusion matrix notation :
Code: Select all
7r2c7
7r1c9 7r1c3
7r9c7 7r9c3 7r9c1
            7r6c1 1r6c1
                  1r6c8 9r6c8
                        9r4c8 9r4c2
      7r3c2                         3r3c2
            7r8c2             9r8c2 3r8c2
Therefore, {7R19, (17)r6c1, (19)r6c8, 9R4, (37)r3c2, (379)r8c2} -> r2c7≠7; stte
In Eureka notation : Kraken Cell (379)r8c2 -> [7r1c9==7r9c7]-7r2c7; stte
    ||3r8c2-(3=7)r3c2-7r1c3=7r1c9
    ||7r8c2-7r9c13=7r9c7
    ||9r8c2-9r4c2=9r4c8-(9=1)r6c8-(1=7)r6c1-7r9c1=*Skyscraper(7r9c*37,7r1c19)
or as an AAIC :
    Skyscraper(7R19)=7r9c1-(7=19)r6c18-9r4c8=9r4c2-9r8c2=*[7r9c7=7r9c13-(7=*3)r8c2-(3=7)r3c2-7r1c3=7r1c9]
Complement: illustrating solving method of higher level puzzle: before using an eventual derived constraint as a supplement to the B/B-Plot, other Wings are available as a starting point to find the solutions of this puzzle. Let us examine the one where the pivot is 4C1 [refer to Steve Kurzkals blog on the au site] :
4C1 strongly couple the cells r35c1 containing 3 and 2 members of bilocals respectively : 5r5c9=(5-4)r5c1=4r3c1-[2r3c1=2r3c3 and 3r3c1=3r3c2]
4C1 is embedded in a "loop" :
Code: Select all
+----------------------+------------------+----------------------+
| 9       8    (47)    | 3     2      5   | 1        6     47    |
| 6       1    5       | 47    9      8   | 37       23    247   |
| 237(4)  37   (247)   | 147   167    16  | 5        8     9     |
+----------------------+------------------+----------------------+
| 15      69   8       | 2     16     7   | 4        159   3     |
| -1(45)  2    149     | 8     3      19  | (69)     7     (56)  |
| 17      679  3       | 5     4      169 | 2        19    8     |
+----------------------+------------------+----------------------+
| 8       4    (126-7) | (17)  (157)  23  | 36-7(9)  (59)  26-57 |
| 1237    379  19-27   | 6     15-7   23  | 8        4     257   |
| 237     5    (267)   | 9     8      4   | 37-6     23    1     |
+----------------------+------------------+----------------------+
In Eureka notation :
    4r3c1=(4-5)r5c1=(5-6)r5c9=(6-9)r5c7=9r7c7-(9=5)r7c8-(5=17)r7c45-(17=2467)r1379c3 loop
In exclusion matrix notation :
Code: Select all
4r3c1 4r5c1
      5r5c1 5r5c9
            6r5c9 6r5c7
                  9r5c7 9r7c7
                        9r7c8 5r7c8
                              5r7c5 1r7c5 7r7c5
                                    1r7c4 7r7c4
                                    1r7c3 7r7c3 2r7c3 6r7c3
                                                2r9c3 6r9c3 7r9c3
                                                2r3c3       7r3c3 4r3c3
                                                            7r1c3 4r1c3
The following derived constraints are available :
    [4r5c1==5r5c1]-1r5c1
    [5r7c8==5r7c5]-5r7c9
    [6r5c7==6r9c3]-3r9c7
    [(17)r7c45==7r7c4]-7r8c5,r7c379
    [2r7c3==2r9c3==2r3c3]-2r8c3
    [7r9c3==7r3c3==7r1c3]-7r8c3
lclste
PS : typo : [6r5c7==6r9c3]-3r9c7 is to be replaced by [6r5c7==6r9c3]-6r9c7. Thanks eleven !
Last edited by JC Van Hay on Wed Dec 30, 2015 8:54 pm, edited 1 time in total.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: December 30, 2015

Postby Marty R. » Wed Dec 30, 2015 7:48 pm

Code: Select all
+---------------+-------------+---------------+
| 9    8   47   | 3   2   5   | 1    6   47   |
| 6    1   5    | 47  9   8   | 37   23  247  |
| 2347 37  247  | 147 167 16  | 5    8   9    |
+---------------+-------------+---------------+
| 15   69  8    | 2   16  7   | 4    159 3    |
| 145  2   149  | 8   3   19  | 69   7   56   |
| 17   679 3    | 5   4   169 | 2    19  8    |
+---------------+-------------+---------------+
| 8    4   1267 | 17  157 23  | 3679 59  2567 |
| 1237 379 1279 | 6   157 23  | 8    4   257  |
| 237  5   267  | 9   8   4   | 367  23  1    |
+---------------+-------------+---------------+

Play this puzzle online at the Daily Sudoku site

Steve: please don't read this :lol:

(6=73)r9c7-(3=7)r2c7-(7=42)r12c9-(2=75)r8c9-(5=6)r5c9=> -6r5c7
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: December 30, 2015

Postby eleven » Wed Dec 30, 2015 8:43 pm

Oh, Marty ...

I like JC's loop.
I verified the eliminiations in the grid, while in the "derived constraints" i can't see -7r7c3 (it's from 17r7c45==7r1c3), and -6r9c7 is missing (6r5c7==6r9c3).
[Added:] I made a grid, where the 2 ways are dvided by a '|', so the eliminations can be seen better [edited overlapping cells]:
Code: Select all
    +----------------------+------------------+----------------------+
    | 9       8   (47|7)   | 3     2      5   | 1        6     47    |
    | 6       1    5       | 47    9      8   | 37       23    247   |
    |(237|4)  37  (247|2)  | 147   167    16  | 5        8     9     |
    +----------------------+------------------+----------------------+
    | 15      69   8       | 2     16     7   | 4        159   3     |
    |-1(4|5)  2    149     | 8     3      19  |(6|9)     7    (5|6)  |
    | 17      679  3       | 5     4      169 | 2        19    8     |
    +----------------------+------------------+----------------------+
    | 8       4   (26|1)-7 |(17|7)(17|5)  23  |(9|36)-7 (5|9) 26-57  |
    | 1237    379  19-27   | 6     15-7   23  | 8        4     257   |
    | 237     5   (267|6)  | 9     8      4   | 37-6     23    1     |
    +----------------------+------------------+----------------------+



This is a uniqueness solution:
Code: Select all
+-------------------+-------------------+-------------------+
| 9     8     47    | 3     2     5     | 1     6     47    |
| 6     1     5     | 47    9     8     | 37    23    247   |
| 2347  37    247   | 147  #16+7 #16    | 5     8     9     |
+-------------------+-------------------+-------------------+
|c15   #69    8     | 2    #16    7     | 4    #19+5  3     |
|d145   2    e149   | 8     3    b19    | 69    7     56    |
| 17   #69+7  3     | 5     4   a#16+9  | 2   b#19    8     |
+-------------------+-------------------+-------------------+
| 8     4    f1267  |g17    157   23    | 3679  59    2567  |
| 1237  379  e1279  | 6     157   23    | 8     4     257   |
| 237   5     267   | 9     8     4     | 367   23    1     |
+-------------------+-------------------+-------------------+

DP169 in marked cells:
7r3c5 or 9r5c3 or 9r6c6 or 9r5c7
9r5c3-r5c6=9r6c6
9r5c7-r5c6=9r6c6
9r6c6-(9=1)r4c6&r5c8-r4c5|r3c8=(1-5)r4c1=(5-4)r5c1=(49-1)r58c3=1r7c3-(1=7)r7c4
=> r23c4<>7, r78c5<>7
Last edited by eleven on Wed Dec 30, 2015 9:53 pm, edited 1 time in total.
eleven
 
Posts: 3154
Joined: 10 February 2008

Re: December 30, 2015

Postby JC Van Hay » Wed Dec 30, 2015 9:23 pm

eleven wrote:I verified the eliminiations in the grid, while in the "derived constraints" i can't see -7r7c3 (it's from 17r7c45==7r1c3), and -6r9c7 is missing (6r5c7==6r9c3).
1. Look at the exclusion matrix : r7c45=17 or r7c5=5, r7c8=r5c7=9, r5c9=6, r5c1=5, r3c1=4, r1c3=7, r3c3=2, r9c3=6, r7c3=1 (r1c3=7 -> r7c3≠7 not represented in the exclusion matrix), r7c4=7 => [(17)r7c45==7r7c4]-7r8c5,r7c389
2. Typo : [6r5c7==6r9c3]-3r9c7 is to be replaced by [6r5c7==6r9c3]-6r9c7

Maybe, just one final observation : my favorite analysis of a puzzle is "(multiple) coloring". The exclusions by the "loop" are therefore obvious, but not so (!) when a particular "notation" is used.
Last edited by JC Van Hay on Wed Dec 30, 2015 10:49 pm, edited 3 times in total.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: December 30, 2015

Postby eleven » Wed Dec 30, 2015 10:08 pm

Yes, i had to edit my 2-way-grid to reflect that in the other direction r7c4 has to be 7 (not 17).
This other direction is easier to spot in my opinion (just singles in col. 3)
(4r5c1=4r3c1-(4=267)r139c3-(267=1)r7c3-(1=57)r7c45-(5=9)r7c8-r7c7=(9-6)r5c7=(6-5)r5c9=r5c1, loop).

[Added:] What i want is to find the eliminations manually as easy as possible, without the need of writing and analysing any notes. I do it in a multicoloring manner in the grid by marking the one and other direction digits. This should be reflected in my 2way grid above.
eleven
 
Posts: 3154
Joined: 10 February 2008

Re: December 30, 2015

Postby ArkieTech » Wed Dec 30, 2015 11:26 pm

Thanks everyone appreciate and learn from this. :D
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: December 30, 2015

Postby David P Bird » Thu Dec 31, 2015 9:08 am

JC Thanks for your detailed explanation of your approach to this puzzle as it give me an appreciation of the way you work.

The goal of finding a one-step solution has provided some interesting almost pattern tricks (especially from you) but it's not my cup of tea as I would only go for a complex structure if it saved a lot of simple ones.

Like Eleven initially I thought some of your eliminations were wrong because I was only considering those from the fantastic closed loop you found, but you were including others from the matrix analysis. I haven't analysed this case but I believe that using AICs these would only be available in follow-on steps which would only be needed if they were significant.

I use Graded Equivalence Marking to solve puzzles which if done to completion shows all the eliminations from chains based stemming from a single strong link. I then select those that appear most significant to implement before moving on to any further strong links that haven't been reached yet. Although GEM can be used to follow branched paths I discipline myself only to use linear chains.

I often find that the number of paths that can be followed from each side of the opening link gives a very good indication of which one is true, the ones from the false side being far more numerous, but of course the challenge is to prove this. I wonder if others also find the same thing?
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England


Return to Puzzles