December 28, 2019

Post puzzles for others to solve here.

December 28, 2019

Postby tarek » Sat Dec 28, 2019 8:39 am

Code: Select all
+-------+-------+-------+
| 9 . . | . . 2 | . 4 . |
| 1 3 . | . 7 . | . . . |
| . 5 . | 3 . . | . . 7 |
+-------+-------+-------+
| . . . | . . 9 | 6 3 . |
| 3 . . | 6 . . | 7 . . |
| . . . | . . 7 | 2 5 . |
+-------+-------+-------+
| . 8 . | 1 . . | . . 3 |
| 4 9 . | . 2 . | . . . |
| 5 . . | . . 8 | . 2 . |
+-------+-------+-------+
9....2.4.13..7.....5.3....7.....963.3..6..7.......725..8.1....349..2....5....8.2.


Warning: This is tougher to get as a 1 stepper

Play this puzzle online at the Daily Sudoku site

Download Sukaku Explainer latest release
User avatar
tarek
 
Posts: 3762
Joined: 05 January 2006

Re: December 28, 2019

Postby Cenoman » Sat Dec 28, 2019 3:26 pm

Code: Select all
 +---------------------+-----------------------+----------------------+
 |  9     67    678    |  58     1568    2     |  3     4      1568   |
 |  1     3     468    |  4589   7       456   |  589   689    2      |
 |  268   5     2468   |  3      14689   146   |  189   1689   7      |
 +---------------------+-----------------------+----------------------+
 |  78    147   1578   |  2      1458    9     |  6     3      148    |
 |  3     2     1589   |  6      1458    145   |  7     189    1489   |
 |  68    146   1689   |  48     3       7     |  2     5      1489   |
 +---------------------+-----------------------+----------------------+
 |  267   8     267    |  1      4569    456   |  459   679    3      |
 |  4     9     167    |  57     2       3     |  158   1678   1568   |
 |  5     167   3      |  479    469     8     |  149   2      169    |
 +---------------------+-----------------------+----------------------+

Triple kraken 5r2, 6r8, r5c8, as a net
Code: Select all
                                  (1)r5c8 - r5c56 = r4c5 - (1)r1c5
                                   ||                        \\
(5-9)r2c4 = r9c4 - r9c9 = r56c9 - (9)r5c8                      (1|8-56)r18c9 = (6)r9c9 - r9c5 = r7c56 - (6=27)r7c13 *
 ||                                ||                        //
 ||                               (8)r5c8 - - - - - - - - -(8)r456c9
 ||                               
(5)r2c6 - r12c4 = (5-7)r8c4 - (7)r9c4
 ||
(5)r2c7 - r1c9 = (5-6)r8c9
                    ||
                   (6)r8c3 - (6=27)r7c13 *
                    ||
                   (6)r8c8 - r89c9 = r1c9 - (6=7)r1c2 *
---------------
=> -7 r9c2; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: December 28, 2019

Postby totuan » Sat Dec 28, 2019 3:41 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 9      67     678    | 58     1568   2      | 3      4      1568   |
 | 1      3      468    | 4589   7      456    | 589    689    2      |
 | 268    5      2468   | 3      14689  146    | 189    1689   7      |
 |----------------------+----------------------+----------------------|
 | 78     147    1578   | 2      1458   9      | 6      3      148    |
 | 3      2      1589   | 6      1458   145    | 7      189    1489   |
 | 68     146    1689   | 48     3      7      | 2      5      1489   |
 |----------------------+----------------------+----------------------|
 | 267    8      267    | 1      4569   456    | 459    679    3      |
 | 4      9      167    | 57     2      3      | 158    1678   1568   |
 | 5      167    3      | 479    469    8      | 149    2      169    |
 *--------------------------------------------------------------------*

My path for this one, the same elimination as Cenoman
Present as diagram: => r9c2<>7, stte

Code: Select all
(6)r9c9-r8c89=(6-1)r8c3=r9c2*
 ||
 ||                       -(1)r1c9=r1c5-r45c5=r5c6-r5c89=r46c9-
 ||                      |                                     |
(6)r8c9--(5)r8c9=(5)r1c9--(5=8)r1c4-(8=4)r6c4-(4)r9c4          |
 ||     |                                      ||              |
 ||      -(6)r9c9                             (7)r9c4*         |
 ||        ||                                  ||              |
 ||       (9)r9c9-----------------------------(9)r9c4          |
 ||        ||                                                  |
 ||       (1)r9c9----------------------------------------------
 ||
 ||
(6)r1c9=(6=7)r1c2*

Have a nice weekend to all!

totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: December 28, 2019

Postby Ngisa » Sat Dec 28, 2019 4:08 pm

Code: Select all
+---------------------+-------------------------+-----------------------+
| 9      c67     678  | i5*8     i1568      2   | 3      4      hd1*56*8|
| 1       3      468  |p45*89     7         456 | 589    689      2     |
| 268     5      2468 | 3         14689     146 | 189    1689     7     |
+---------------------+-------------------------+-----------------------+
| 78      147    1578 | 2        j1458      9   | 6      3       m1*48  |
| 3       2      1589 | 6        j1458     k145 | 7     L189     L1489  |
| 68      146    1689 | 48        3         7   | 2      5       m1*489 |
+---------------------+-------------------------+-----------------------+
| c267    8     c267  | 1        d4569     d456 | 459    679      3     |
| 4       9      167  |q5-7       2         3   | 158    1678    g1568  |
| 5      b167    3    |oa479     e469       8   | 149    2      nf16*9  |
+---------------------+-------------------------+-----------------------+

(7)r9c4 = r9c2 - (7=6)r1c2&(7=2|6)r7c13) - (6*)r1c9&r7c56 = (6)r9c5 - (6*)r9c9 = (6-5)r8c9 = (5-1)r1c9 = ((1)r1c5&(-5*)r1c4)) - (1)r45c5 = r5c6 - r5c89 = (1*)r46c9 - (1*6*=9)r9c9 - r9c4 = (9-5*)r2c4 = (5)r8c4 => - 7r8c4; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: December 28, 2019

Postby Mauriès Robert » Sat Dec 28, 2019 5:22 pm

Hi all,
My resolution with TDP in two short steps :

P'(5r1c9) : -5r1c9 (see diagram) => -5r8c9 => 7 placements and -1r9c9, -6p679b1, -6r78c8, -5r7c5.

Code: Select all
           >5r1c5->5r8c4*
         /
-5r1c9->
         \           
           >5r1c4->7r8c4->7r7c8->26r7c23->6r9c5-->6r8c9*
                      \      \                  /
                        - - - - >7r9c2->6r1c2--
* =>-5r8c9

P'(7r8c8) : -7r8c8->----->7r8c3 (see diagram) =>-7r8c4 =>r8c4=5, stte.

Code: Select all
-7r8c8->26r7c23->6r9c5->4r9c7->1r9c2->7r8c3
           \                        /
            - - - - - - - - - - - -


Robert
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: December 28, 2019

Postby SteveG48 » Sat Dec 28, 2019 7:47 pm

Ngisa wrote:
Code: Select all
+---------------------+-------------------------+-----------------------+
| 9      c67     678  | i5*8     i1568      2   | 3      4      hd1*56*8|
| 1       3      468  |p45*89     7         456 | 589    689      2     |
| 268     5      2468 | 3         14689     146 | 189    1689     7     |
+---------------------+-------------------------+-----------------------+
| 78      147    1578 | 2        j1458      9   | 6      3       m1*48  |
| 3       2      1589 | 6        j1458     k145 | 7     L189     L1489  |
| 68      146    1689 | 48        3         7   | 2      5       m1*489 |
+---------------------+-------------------------+-----------------------+
| c267    8     c267  | 1        d4569     d456 | 459    679      3     |
| 4       9      167  |q5-7       2         3   | 158    1678    g1568  |
| 5      b167    3    |oa479     e469       8   | 149    2      nf16*9  |
+---------------------+-------------------------+-----------------------+

(7)r9c4 = r9c2 - (7=6)r1c2&(7=2|6)r7c13) - (6*)r1c9&r7c56 = (6)r9c5 - (6*)r9c9 = (6-5)r8c9 = (5-1)r1c9 = ((1)r1c5&(-5*)r1c4)) - (1)r45c5 = r5c6 - r5c89 = (1*)r46c9 - (1*6*=9)r9c9 - r9c4 = (9-5*)r2c4 = (5)r8c4 => - 7r8c4; stte

Clement


Hi, Clement. I'd certainly quibble with your notation, but congratulations on seeing it through. Well done.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 28, 2019

Postby Ngisa » Sat Dec 28, 2019 8:44 pm

SteveG48 wrote:
Hi, Clement. I'd certainly quibble with your notation, but congratulations on seeing it through. Well done.
Thanks. I will appreciate if anyone can write/put it in a better way, the 5's in r12c4 are eliminated through different routes i.e step i(double brackets) and step p.
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: December 28, 2019

Postby SpAce » Sun Dec 29, 2019 4:03 am

Ngisa wrote:(7)r9c4 = r9c2 - (7=6)r1c2&(7=2|6)r7c13) - (6*)r1c9&r7c56 = (6)r9c5 - (6*)r9c9 = (6-5)r8c9 = (5-1)r1c9 = ((1)r1c5&(-5*)r1c4)) - (1)r45c5 = r5c6 - r5c89 = (1*)r46c9 - (1*6*=9)r9c9 - r9c4 = (9-5*)r2c4 = (5)r8c4 => - 7r8c4; stte

I will appreciate if anyone can write/put it in a better way

For a net this complicated I'd recommend looking at how Cenoman and totuan wrote theirs. If you insist on using a memory chain, here's how I'd do it:

(7)r9c4 = (7,26)b7p813 - (7)r1c2|(6)r7c56 = (6)r1c2&r9c5 - r19c9 = (6*-5)r8c9 = (5^-1)r1c9 = r1c5 - r45c5 = r5c6 - r5c89 = r46c9 - (1|*6=9)r9c9 - r9c4 = (9-5)r2^1c4 = (5)r8c4 => -7 r8c4; stte

compacted chain: Show
7r9c4 = 7,26b7p813 - 7r1c2|6r7c56 = 6r1c2&r9c5 - r19c9 = (6*,5^-1)r81c9 = r1-45c5 = r5c6-89 = r46c9 - (1|*6=9)r9c9 - r9c4 = (9-5)r2^1c4 = 5r8c4 => -7 r8c4; stte

12x12 TM: Show
Code: Select all
 7r9c4 7r9c2
       7r7c13 26r7c13
               6r7c56 6r9c5
       7r1c2                6r1c2
                      6r9c9 6r1c9 6r8c9
                                  5r8c9 5r1c9
                                        1r1c9 1r1c5
                                              1r45c5 1r5c6
                                                     1r5c89 1r46c9
                      6r9c9                                 1r9c9  9r9c9
                                                                   9r9c4 9r2c4
 5r8c4                                  5r1c4                            5r2c4
------------------------------------------------------------------------------
-7r8c4

(I refrain from solving puzzles and other involvement for a while but couldn't resist answering this.)
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: December 28, 2019

Postby Ngisa » Sun Dec 29, 2019 2:34 pm

SpAce wrote:
Ngisa wrote:(7)r9c4 = r9c2 - (7=6)r1c2&(7=2|6)r7c13) - (6*)r1c9&r7c56 = (6)r9c5 - (6*)r9c9 = (6-5)r8c9 = (5-1)r1c9 = ((1)r1c5&(-5*)r1c4)) - (1)r45c5 = r5c6 - r5c89 = (1*)r46c9 - (1*6*=9)r9c9 - r9c4 = (9-5*)r2c4 = (5)r8c4 => - 7r8c4; stte

I will appreciate if anyone can write/put it in a better way

For a net this complicated I'd recommend looking at how Cenoman and totuan wrote theirs. If you insist on using a memory chain, here's how I'd do it:

(7)r9c4 = (7,26)b7p813 - (7)r1c2|(6)r7c56 = (6)r1c2&r9c5 - r19c9 = (6*-5)r8c9 = (5^-1)r1c9 = r1c5 - r45c5 = r5c6 - r5c89 = r46c9 - (1|*6=9)r9c9 - r9c4 = (9-5)r2^1c4 = (5)r8c4 => -7 r8c4; stte

compacted chain: Show
7r9c4 = 7,26b7p813 - 7r1c2|6r7c56 = 6r1c2&r9c5 - r19c9 = (6*,5^-1)r81c9 = r1-45c5 = r5c6-89 = r46c9 - (1|*6=9)r9c9 - r9c4 = (9-5)r2^1c4 = 5r8c4 => -7 r8c4; stte

12x12 TM: Show
Code: Select all
 7r9c4 7r9c2
       7r7c13 26r7c13
               6r7c56 6r9c5
       7r1c2                6r1c2
                      6r9c9 6r1c9 6r8c9
                                  5r8c9 5r1c9
                                        1r1c9 1r1c5
                                              1r45c5 1r5c6
                                                     1r5c89 1r46c9
                      6r9c9                                 1r9c9  9r9c9
                                                                   9r9c4 9r2c4
 5r8c4                                  5r1c4                            5r2c4
------------------------------------------------------------------------------
-7r8c4

(I refrain from solving puzzles and other involvement for a while but couldn't resist answering this.)
Yes, that is better. Thanks
Ngisa
 
Posts: 1411
Joined: 18 November 2012


Return to Puzzles