- Code: Select all
*-----------*
|1.3|...|...|
|6.7|..3|2.1|
|.9.|16.|..7|
|---+---+---|
|...|2..|.1.|
|..8|5.6|7..|
|.6.|..7|...|
|---+---+---|
|4..|.28|.7.|
|7.1|9..|4.2|
|...|...|5.8|
*-----------*
Play/Print this puzzle online
*-----------*
|1.3|...|...|
|6.7|..3|2.1|
|.9.|16.|..7|
|---+---+---|
|...|2..|.1.|
|..8|5.6|7..|
|.6.|..7|...|
|---+---+---|
|4..|.28|.7.|
|7.1|9..|4.2|
|...|...|5.8|
*-----------*
*-----------------------------------------------------------*
| 1 245 3 | 478 4579 249 | 89 b4589 6 |
| 6 45 7 | 48 459 3 | 2 b4589 1 |
| 8 9 25 | 1 6 24 | 3 b45 7 |
*-------------------+-------------------+-------------------|
| 35 7 49 | 2 8 49 | 6 1 35 |
|d239 1 8 | 5 49 6 | 7 239 349 |
|c259 6 c249 | 3 1 7 | 89 b289 459 |
*-------------------+-------------------+-------------------|
| 4 35 59 | 6 2 8 | 1 7 39 |
| 7 8 1 | 9 3 5 | 4 6 2 |
| 9-2 a23 6 | 47 47 1 | 5 a39 8 |
*-----------------------------------------------------------*
1 245 3 | 478 4579 249 | 89 4589 6
6 d45 7 | 48 459 3 | 2 4589 1
8 9 c25 | 1 6 b24 | 3 45 7
------------------------+----------------------+---------------------
35 7 49 | 2 8 a49 | 6 1 35
239 1 8 | 5 49 6 | 7 239 349
259 6 249 | 3 1 7 | 89 289 459
------------------------+----------------------+---------------------
4 35 59 | 6 2 8 | 1 7 39
7 8 1 | 9 3 5 | 4 6 2
29 23 6 | 47 47 1 | 5 39 8
+-------------+--------------+-------------+
| 1 245 3 | 478 4579 249 | 89 4589 6 |
| 6 45 7 | 48 459 3 | 2 4589 1 |
| 8 9 25 | 1 6 24 | 3 45 7 |
+-------------+--------------+-------------+
| 35 7 49 | 2 8 49 | 6 1 35 |
| 239 1 8 | 5 49 6 | 7 239 349 |
| 259 6 249 | 3 1 7 | 89 289 459 |
+-------------+--------------+-------------+
| 4 35 59 | 6 2 8 | 1 7 39 |
| 7 8 1 | 9 3 5 | 4 6 2 |
| 29 23 6 | 47 47 1 | 5 39 8 |
+-------------+--------------+-------------+
+-----------------+----------------+-----------------+
| 1 245 3 | 478 4579 249 | 89 4589 6 |
| 6 45 7 | 48 459 3 | 2 4589 1 |
| 8 9 25 | 1 6 24 | 3 45 7 |
+-----------------+----------------+-----------------+
| 35 7 49 | 2 8 49 | 6 1 35 |
| 39(2) 1 8 | 5 49 6 | 7 9-3(2) 349 |
| 259 6 249 | 3 1 7 | 89 289 459 |
+-----------------+----------------+-----------------+
| 4 35 59 | 6 2 8 | 1 7 39 |
| 7 8 1 | 9 3 5 | 4 6 2 |
| (29) 23 6 | 47 47 1 | 5 (39) 8 |
+-----------------+----------------+-----------------+
Marty R. wrote:
- Code: Select all
+-------------+--------------+-------------+
| 1 245 3 | 478 4579 249 | 89 4589 6 |
| 6 45 7 | 48 459 3 | 2 4589 1 |
| 8 9 25 | 1 6 24 | 3 45 7 |
+-------------+--------------+-------------+
| 35 7 49 | 2 8 49 | 6 1 35 |
| 239 1 8 | 5 49 6 | 7 239 349 |
| 259 6 249 | 3 1 7 | 89 289 459 |
+-------------+--------------+-------------+
| 4 35 59 | 6 2 8 | 1 7 39 |
| 7 8 1 | 9 3 5 | 4 6 2 |
| 29 23 6 | 47 47 1 | 5 39 8 |
+-------------+--------------+-------------+
Play this puzzle online at the Daily Sudoku site
(3=9)r9c8-(9=32)r9c12-r1c2=r3c3-(2=495)r467c3-(5=3)r7c2-=> -3r7c9
pjb wrote:
- Code: Select all
1 245 3 | 478 4579 249 | 89 4589 6
6 d45 7 | 48 459 3 | 2 4589 1
8 9 c25 | 1 6 b24 | 3 45 7
------------------------+----------------------+---------------------
35 7 49 | 2 8 a49 | 6 1 35
239 1 8 | 5 49 6 | 7 239 349
259 6 249 | 3 1 7 | 89 289 459
------------------------+----------------------+---------------------
4 35 59 | 6 2 8 | 1 7 39
7 8 1 | 9 3 5 | 4 6 2
29 23 6 | 47 47 1 | 5 39 8
(9=4)r4c6 => -4 r13c6
(9=4)r4c6 - (4=2)r3c6 - (2=4)r2c2,r3c3 => -4 r2c45 => r4c6 = 9; stte
Phil
Marty, I don't follow the highlighted step. Eliminating 9 from r9c12 gives 2 in r9c1 and 3 in r9c2, so it doesn't weak link to the 2 in r1c2.
Phil, I understand that if r4c6 is a 9 than none of r13c6 or r2c45 can be a 4, but we still have candidate 4's at r1c45 in b2, so I don't understand the conclusion.
JC Van Hay wrote: {2r5c81, (29)r9c1, (93)r9c8} -> r5c8≠3; stte
This forces r1c45 to be the 47 naked pair which completes the UR. Therefore r4c6 must be 9.
Seasons greetings, Phil
pjb wrote:Phil, I understand that if r4c6 is a 9 than none of r13c6 or r2c45 can be a 4, but we still have candidate 4's at r1c45 in b2, so I don't understand the conclusion.
Steve
This forces r1c45 to be the 47 naked pair which completes the UR. Therefore r4c6 must be 9.
Seasons greetings, Phil
SteveC,Sudtyro2 wrote:JC Van Hay wrote: {2r5c81, (29)r9c1, (93)r9c8} -> r5c8≠3; stte
JC, is this an alternate notation scheme for a simple AIC? I must have missed that class.
SteveC
JC Van Hay wrote:The solutions of a set P of N constraints exclude a set X of candidates : P={C1, ..., CN} -> [set of derived constraints] -> -X.
To justify in details the exclusions, a player can read the set P either in "English", or in Nice Loop notation, or in Eureka notation, or in nrczt-chain/whip/braid notation, or in forbidding/exclusion matrix notation, or by drawing an SLG, ... in order to get the derived constraints.