December 27, 2015

Post puzzles for others to solve here.

December 27, 2015

Postby ArkieTech » Sun Dec 27, 2015 12:18 am

Code: Select all
 *-----------*
 |1.3|...|...|
 |6.7|..3|2.1|
 |.9.|16.|..7|
 |---+---+---|
 |...|2..|.1.|
 |..8|5.6|7..|
 |.6.|..7|...|
 |---+---+---|
 |4..|.28|.7.|
 |7.1|9..|4.2|
 |...|...|5.8|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: December 27, 2015

Postby SteveG48 » Sun Dec 27, 2015 12:27 am

Code: Select all
 *-----------------------------------------------------------*
 | 1     245   3     | 478   4579  249   | 89   b4589  6     |
 | 6     45    7     | 48    459   3     | 2    b4589  1     |
 | 8     9     25    | 1     6     24    | 3    b45    7     |
 *-------------------+-------------------+-------------------|
 | 35    7     49    | 2     8     49    | 6     1     35    |
 |d239   1     8     | 5     49    6     | 7     239   349   |
 |c259   6    c249   | 3     1     7     | 89   b289   459   |
 *-------------------+-------------------+-------------------|
 | 4     35    59    | 6     2     8     | 1     7     39    |
 | 7     8     1     | 9     3     5     | 4     6     2     |
 | 9-2  a23    6     | 47    47    1     | 5    a39    8     |
 *-----------------------------------------------------------*


(2=39)r9c28 - (9=2458)r1236c8 - 2r6c13 = 2r5c1 => -2 r9c1 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 27, 2015

Postby pjb » Sun Dec 27, 2015 1:49 am

Code: Select all
 1       245     3      | 478    4579   249    | 89     4589   6     
 6      d45      7      | 48     459    3      | 2      4589   1     
 8       9      c25     | 1      6     b24     | 3      45     7     
------------------------+----------------------+---------------------
 35      7       49     | 2      8     a49     | 6      1      35     
 239     1       8      | 5      49     6      | 7      239    349   
 259     6       249    | 3      1      7      | 89     289    459   
------------------------+----------------------+---------------------
 4       35      59     | 6      2      8      | 1      7      39     
 7       8       1      | 9      3      5      | 4      6      2     
 29      23      6      | 47     47     1      | 5      39     8     

(9=4)r4c6 => -4 r13c6
(9=4)r4c6 - (4=2)r3c6 - (2=4)r2c2,r3c3 => -4 r2c45 => r4c6 = 9; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: December 27, 2015

Postby Marty R. » Sun Dec 27, 2015 2:14 am

Code: Select all
+-------------+--------------+-------------+
| 1   245 3   | 478 4579 249 | 89 4589 6   |
| 6   45  7   | 48  459  3   | 2  4589 1   |
| 8   9   25  | 1   6    24  | 3  45   7   |
+-------------+--------------+-------------+
| 35  7   49  | 2   8    49  | 6  1    35  |
| 239 1   8   | 5   49   6   | 7  239  349 |
| 259 6   249 | 3   1    7   | 89 289  459 |
+-------------+--------------+-------------+
| 4   35  59  | 6   2    8   | 1  7    39  |
| 7   8   1   | 9   3    5   | 4  6    2   |
| 29  23  6   | 47  47   1   | 5  39   8   |
+-------------+--------------+-------------+

Play this puzzle online at the Daily Sudoku site

(3=9)r9c8-(9=32)r9c12-r1c2=r3c3-(2=495)r467c3-(5=3)r7c2-=> -3r7c9
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: December 27, 2015

Postby JC Van Hay » Sun Dec 27, 2015 8:25 am

Code: Select all
+-----------------+----------------+-----------------+
| 1      245  3   | 478  4579  249 | 89  4589    6   |
| 6      45   7   | 48   459   3   | 2   4589    1   |
| 8      9    25  | 1    6     24  | 3   45      7   |
+-----------------+----------------+-----------------+
| 35     7    49  | 2    8     49  | 6   1       35  |
| 39(2)  1    8   | 5    49    6   | 7   9-3(2)  349 |
| 259    6    249 | 3    1     7   | 89  289     459 |
+-----------------+----------------+-----------------+
| 4      35   59  | 6    2     8   | 1   7       39  |
| 7      8    1   | 9    3     5   | 4   6       2   |
| (29)   23   6   | 47   47    1   | 5   (39)    8   |
+-----------------+----------------+-----------------+
{2r5c81, (29)r9c1, (93)r9c8} -> r5c8≠3; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: December 27, 2015

Postby SteveG48 » Sun Dec 27, 2015 6:35 pm

Marty R. wrote:
Code: Select all
+-------------+--------------+-------------+
| 1   245 3   | 478 4579 249 | 89 4589 6   |
| 6   45  7   | 48  459  3   | 2  4589 1   |
| 8   9   25  | 1   6    24  | 3  45   7   |
+-------------+--------------+-------------+
| 35  7   49  | 2   8    49  | 6  1    35  |
| 239 1   8   | 5   49   6   | 7  239  349 |
| 259 6   249 | 3   1    7   | 89 289  459 |
+-------------+--------------+-------------+
| 4   35  59  | 6   2    8   | 1  7    39  |
| 7   8   1   | 9   3    5   | 4  6    2   |
| 29  23  6   | 47  47   1   | 5  39   8   |
+-------------+--------------+-------------+

Play this puzzle online at the Daily Sudoku site

(3=9)r9c8-(9=32)r9c12-r1c2=r3c3-(2=495)r467c3-(5=3)r7c2-=> -3r7c9


Marty, I don't follow the highlighted step. Eliminating 9 from r9c12 gives 2 in r9c1 and 3 in r9c2, so it doesn't weak link to the 2 in r1c2.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 27, 2015

Postby SteveG48 » Sun Dec 27, 2015 6:49 pm

pjb wrote:
Code: Select all
 1       245     3      | 478    4579   249    | 89     4589   6     
 6      d45      7      | 48     459    3      | 2      4589   1     
 8       9      c25     | 1      6     b24     | 3      45     7     
------------------------+----------------------+---------------------
 35      7       49     | 2      8     a49     | 6      1      35     
 239     1       8      | 5      49     6      | 7      239    349   
 259     6       249    | 3      1      7      | 89     289    459   
------------------------+----------------------+---------------------
 4       35      59     | 6      2      8      | 1      7      39     
 7       8       1      | 9      3      5      | 4      6      2     
 29      23      6      | 47     47     1      | 5      39     8     

(9=4)r4c6 => -4 r13c6
(9=4)r4c6 - (4=2)r3c6 - (2=4)r2c2,r3c3 => -4 r2c45 => r4c6 = 9; stte

Phil


Phil, I understand that if r4c6 is a 9 than none of r13c6 or r2c45 can be a 4, but we still have candidate 4's at r1c45 in b2, so I don't understand the conclusion.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 27, 2015

Postby Marty R. » Sun Dec 27, 2015 7:59 pm

Marty, I don't follow the highlighted step. Eliminating 9 from r9c12 gives 2 in r9c1 and 3 in r9c2, so it doesn't weak link to the 2 in r1c2.


OK, thanks Steve, that was egregiously careless of me. (What would I do if you weren't around to keep me honest?)
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: December 27, 2015

Postby pjb » Sun Dec 27, 2015 9:50 pm

Phil, I understand that if r4c6 is a 9 than none of r13c6 or r2c45 can be a 4, but we still have candidate 4's at r1c45 in b2, so I don't understand the conclusion.


Steve
This forces r1c45 to be the 47 naked pair which completes the UR. Therefore r4c6 must be 9.
Seasons greetings, Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: December 27, 2015

Postby Sudtyro2 » Sun Dec 27, 2015 10:11 pm

JC Van Hay wrote: {2r5c81, (29)r9c1, (93)r9c8} -> r5c8≠3; stte

JC, is this an alternate notation scheme for a simple AIC? I must have missed that class. :(

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: December 27, 2015

Postby Marty R. » Sun Dec 27, 2015 11:37 pm

This forces r1c45 to be the 47 naked pair which completes the UR. Therefore r4c6 must be 9.
Seasons greetings, Phil


I'm missing something, par for the course. If r1c45 is a 47 naked pair, doesn't that knock out 4s in c6, leaving r4c6=4?
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: December 27, 2015

Postby SteveG48 » Sun Dec 27, 2015 11:39 pm

pjb wrote:
Phil, I understand that if r4c6 is a 9 than none of r13c6 or r2c45 can be a 4, but we still have candidate 4's at r1c45 in b2, so I don't understand the conclusion.


Steve
This forces r1c45 to be the 47 naked pair which completes the UR. Therefore r4c6 must be 9.
Seasons greetings, Phil


Aha! Now I see it. Thanks, Phil.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 27, 2015

Postby JC Van Hay » Mon Dec 28, 2015 11:09 am

Sudtyro2 wrote:
JC Van Hay wrote: {2r5c81, (29)r9c1, (93)r9c8} -> r5c8≠3; stte

JC, is this an alternate notation scheme for a simple AIC? I must have missed that class. :(

SteveC
SteveC,

The solutions of a set P of N constraints exclude a set X of candidates : P={C1, ..., CN} -> [set of derived constraints] -> -X.
To justify in details the exclusions, a player can read the set P either in "English", or in Nice Loop notation, or in Eureka notation, or in nrczt-chain/whip/braid notation, or in forbidding/exclusion matrix notation, or by drawing an SLG, ... in order to get the derived constraints.

JC
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: December 27, 2015

Postby ArkieTech » Mon Dec 28, 2015 12:25 pm

JC Van Hay wrote:The solutions of a set P of N constraints exclude a set X of candidates : P={C1, ..., CN} -> [set of derived constraints] -> -X.
To justify in details the exclusions, a player can read the set P either in "English", or in Nice Loop notation, or in Eureka notation, or in nrczt-chain/whip/braid notation, or in forbidding/exclusion matrix notation, or by drawing an SLG, ... in order to get the derived constraints.


:D 8-) I like
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: December 27, 2015

Postby eleven » Mon Dec 28, 2015 8:52 pm

A notation i like, should
- give a hint for a manual player, how she could find a move herself
- show the complexity of a move

JC's does neither.
A known pattern is a known pattern, and an AIC or similar at least shows where to start and how the candidates/cells are connected to get to the conclusion.

In this notation both a simple move (as here) can be hidden and a complex network or base/cover move.
It might be useful to have a program, which finds such moves for harder puzzles, which then can be evaluated manually. But posting moves in this form is like giving readers a riddle (why is the elimination correct?).
eleven
 
Posts: 3154
Joined: 10 February 2008

Next

Return to Puzzles