December 20, 2015

Post puzzles for others to solve here.

December 20, 2015

Postby ArkieTech » Sun Dec 20, 2015 12:13 am

Code: Select all
 *-----------*
 |.7.|.93|5..|
 |5..|4..|...|
 |.9.|2..|...|
 |---+---+---|
 |...|...|17.|
 |..1|536|8..|
 |.82|...|...|
 |---+---+---|
 |...|..1|.3.|
 |...|..5|..9|
 |..8|72.|.5.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: December 20, 2015

Postby Leren » Sun Dec 20, 2015 12:24 am

Code: Select all
*-----------------------------------------------------------------------*
| 18     7      4       | 6      9      3       | 5      2      18      |
| 5      2      36      | 4      1      78      | 9      68     3678    |
| 18     9      36      | 2      5      78      | 3467   1468   134678  |
|-----------------------+-----------------------+-----------------------|
| 369    356    59      | 89    a48     2       | 1      7      346     |
| 7      4      1       | 5      3      6       | 8      9      2       |
| 369    8      2       | 1      7      49      | 346    46     5       |
|-----------------------+-----------------------+-----------------------|
| 2469  b56    b59      |b89    b468    1       | 2467   3      4678    |
| 246    16     7       | 3      46-8   5       | 246    1468   9       |
| 3469   136    8       | 7      2      49      | 46     5      146     |
*-----------------------------------------------------------------------*

ALS XZ Rule: X = 4, Z = 8: (8=4) r4c5 - (4=8) r7c2345 => - 8 r8c5; stte

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: December 20, 2015

Postby SteveG48 » Sun Dec 20, 2015 12:37 am

Code: Select all
 *-----------------------------------------------------------------------------*
 | 18      7       4       | 6       9       3       | 5       2      d18      |
 | 5       2       36      | 4       1       78      | 9      e68     d3678    |
 | 18      9       36      | 2       5       78      | 3467    1468   d134678  |
 *-------------------------+-------------------------+-------------------------|
 | 369     356     59      |a89     a48      2       | 1       7       36-4    |
 | 7       4       1       | 5       3       6       | 8       9       2       |
 | 369     8       2       | 1       7       9-4     | 346    e46      5       |
 *-------------------------+-------------------------+-------------------------|
 | 2469    56      59      |b89      468     1       | 2467    3      c4678    |
 | 246     16      7       | 3       468     5       | 246     1468    9       |
 | 3469    136     8       | 7       2       49      | 46      5       146     |
 *-----------------------------------------------------------------------------*


(4=89)r4c45 - (9=8)r7c4 - r7c9 = r123c9 - (8=46)r26c8 => -4 r4c9,r6c6 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 20, 2015

Postby Marty R. » Sun Dec 20, 2015 2:04 am

Code: Select all
+-------------+-----------+------------------+
| 18   7   4  | 6  9   3  | 5    2    18     |
| 5    2   36 | 4  1   78 | 9    68   3678   |
| 18   9   36 | 2  5   78 | 3467 1468 134678 |
+-------------+-----------+------------------+
| 369  356 59 | 89 48  2  | 1    7    346    |
| 7    4   1  | 5  3   6  | 8    9    2      |
| 369  8   2  | 1  7   49 | 346  46   5      |
+-------------+-----------+------------------+
| 2469 56  59 | 89 468 1  | 2467 3    4678   |
| 246  16  7  | 3  468 5  | 246  1468 9      |
| 3469 136 8  | 7  2   49 | 46   5    146    |
+-------------+-----------+------------------+

Play this puzzle online at the Daily Sudoku site

(9=5)r4c3-(5=9)r7c3-(9=8)r7c4-(8=49)b5p19=> -9r4c4
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: December 20, 2015

Postby pjb » Sun Dec 20, 2015 10:59 am

Code: Select all
 18      7       4      | 6      9      3      | 5      2      18     
 5       2       36     | 4      1      78     | 9     d68     3678   
 18      9       36     | 2      5      78     | 3467   1468   134678
------------------------+----------------------+---------------------
 369     356     59     | 89    a48     2      | 1      7      36-4   
 7       4       1      | 5      3      6      | 8      9      2     
 369     8       2      | 1      7      9-4    | 346   d46     5     
------------------------+----------------------+---------------------
 2469    56      59     | 89     468    1      | 2467   3      4678   
 246     16      7      | 3     b468    5      | 246   c1468   9     
 3469    136     8      | 7      2      49     | 46     5      146   

(4=8)r4c5 - r8c5 = r8c8 - (8=4)r26c8 => -4 r4c9, r6c6; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: December 20, 2015

Postby SteveG48 » Sun Dec 20, 2015 5:28 pm

Marty R. wrote:
Code: Select all
+-------------+-----------+------------------+
| 18   7   4  | 6  9   3  | 5    2    18     |
| 5    2   36 | 4  1   78 | 9    68   3678   |
| 18   9   36 | 2  5   78 | 3467 1468 134678 |
+-------------+-----------+------------------+
| 369  356 59 | 89 48  2  | 1    7    346    |
| 7    4   1  | 5  3   6  | 8    9    2      |
| 369  8   2  | 1  7   49 | 346  46   5      |
+-------------+-----------+------------------+
| 2469 56  59 | 89 468 1  | 2467 3    4678   |
| 246  16  7  | 3  468 5  | 246  1468 9      |
| 3469 136 8  | 7  2   49 | 46   5    146    |
+-------------+-----------+------------------+

Play this puzzle online at the Daily Sudoku site

(9=5)r4c3-(5=9)r7c3-(9=8)r7c4-(8=49)b5p19=> -9r4c4


Marty, I don't think this works. What you've shown is that if r4c3 is not a 9, either r4c4 or r6c6 (b5p19) is a 9. What if the one that's a 9 is r4c4? You can't conclude -9 r4c4. Your final pair can't include the target cell.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 20, 2015

Postby Marty R. » Sun Dec 20, 2015 7:32 pm

SteveG48 wrote:
Marty R. wrote:
Code: Select all
+-------------+-----------+------------------+
| 18   7   4  | 6  9   3  | 5    2    18     |
| 5    2   36 | 4  1   78 | 9    68   3678   |
| 18   9   36 | 2  5   78 | 3467 1468 134678 |
+-------------+-----------+------------------+
| 369  356 59 | 89 48  2  | 1    7    346    |
| 7    4   1  | 5  3   6  | 8    9    2      |
| 369  8   2  | 1  7   49 | 346  46   5      |
+-------------+-----------+------------------+
| 2469 56  59 | 89 468 1  | 2467 3    4678   |
| 246  16  7  | 3  468 5  | 246  1468 9      |
| 3469 136 8  | 7  2   49 | 46   5    146    |
+-------------+-----------+------------------+

Play this puzzle online at the Daily Sudoku site

(9=5)r4c3-(5=9)r7c3-(9=8)r7c4-(8=49)b5p19=> -9r4c4


Marty, I don't think this works. What you've shown is that if r4c3 is not a 9, either r4c4 or r6c6 (b5p19) is a 9. What if the one that's a 9 is r4c4? You can't conclude -9 r4c4. Your final pair can't include the target cell.


[/quote]SteveG48 wrote:

Marty R. wrote:





Play this puzzle online at the Daily Sudoku site

(9=5)r4c3-(5=9)r7c3-(9=8)r7c4-(8=49)b5p19=> -9r4c4



Marty, I don't think this works. What you've shown is that if r4c3 is not a 9, either r4c4 or r6c6 (b5p19) is a 9. What if the one that's a 9 is r4c4? You can't conclude -9 r4c4. Your final pair can't include the target cell.



Your final pair can't include the target cell.




Steve, I don't understand this sentence. What is a "final pair"? I think you're saying that I got the right answer, but accidentally, since the ALS is wrong,but I don't know why it's wrong.

What if the one that's a 9 is r4c4?




Of course if it's 9 it can't be -9. Why are we bothering with the "if", since being 9 is impossible if r4c3 is (9=5).
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: December 20, 2015

Postby SteveG48 » Sun Dec 20, 2015 9:27 pm

Marty, when I say the "final pair", I'm referring to the 49 pair in b5p19 after you remove 8:

(9=5)r4c3-(5=9)r7c3-(9=8)r7c4-(8=49)b5p19=> -9r4c4

In general, you can't use the b5p19 pair to remove the 9 from b5p1, because the 9 may be b5p1 and the 4 may be b5p9. In this particular puzzle, we know that that's the case.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: December 20, 2015

Postby Marty R. » Sun Dec 20, 2015 10:19 pm

SteveG48 wrote:Marty, when I say the "final pair", I'm referring to the 49 pair in b5p19 after you remove 8:

(9=5)r4c3-(5=9)r7c3-(9=8)r7c4-(8=49)b5p19=> -9r4c4

In general, you can't use the b5p19 pair to remove the 9 from b5p1, because the 9 may be b5p1 and the 4 may be b5p9. In this particular puzzle, we know that that's the case.


Steve,

Did you ever hear that silly old joke that the definition of wasted energy is telling a hair-raising story to a bald man? When it comes to stuff like this, I'm the bald man. I know my conclusion is correct.I did have concerns about that ALS and you've shown that my concerns were warranted.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: December 20, 2015

Postby bat999 » Sun Dec 20, 2015 10:51 pm

Code: Select all
.------------------.---------------.------------------------.
|  18     7     4  |  6   9     3  |  5      2      8-1     |
|  5      2     36 |  4   1     78 |  9     f68     3678    |
|  18     9     36 |  2   5     78 |  3467  f1468   34678-1 |
:------------------+-------------------+--------------------:
|  369    356   59 |  89  48    2  |  1      7      346     |
|  7      4     1  |  5   3     6  |  8      9      2       |
|  369    8     2  |  1   7     49 |  346   f46     5       |
:------------------+---------------+------------------------:
|  2469  b56   b59 | c89  468   1  |  2467   3     d4678    |
|  246   b16    7  |  3   468   5  |  246   e468-1  9       |
| a3469  b136   8  |  7   2    a49 | a46     5     a146     |
'------------------'---------------'------------------------'
(1=3)r9c1679 - (3=9)r7c23,r89c2 - (9=8)r7c4 - r7c9 = r8c8 - (8=1)r236c8 => -1 r13c9,r8c8; stte
8-)
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK


Return to Puzzles