December 14, 2019

Post puzzles for others to solve here.

December 14, 2019

Postby ArkieTech » Sat Dec 14, 2019 6:04 am

Code: Select all
 *-----------*
 |7..|...|..6|
 |..4|8.9|3..|
 |..9|.2.|4..|
 |---+---+---|
 |5..|1.4|..3|
 |...|265|...|
 |9..|7.8|..4|
 |---+---+---|
 |..8|.4.|1..|
 |..1|5.6|8..|
 |2..|...|..7|
 *-----------*

7.......6..48.93....9.2.4..5..1.4..3...265...9..7.8..4..8.4.1....15.68..2.......7


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: December 14, 2019

Postby SpAce » Sat Dec 14, 2019 8:24 am

Code: Select all
.-------------------.-----------.---------------------------.
| 7     ^125'8  25  | 4   15  3 | ^5(9)'2*  ^12589*   6     |
| 16    ^156'2  4   | 8   15  9 |  3         7       ^125*  |
| 138    1358   9   | 6   2   7 |  4         158      158   |
:-------------------+-----------+---------------------------:
| 5     ^28'6   267 | 1   9   4 | ^26'7      268      3     |
| 1348   1348   37  | 2   6   5 | ^7{9}      189      189   |
| 9      126    26  | 7   3   8 |  256       1256     4     |
:-------------------+-----------+---------------------------:
| 36     7      8   | 39  4   2 |  1         3569     59    |
| 34     349    1   | 5   7   6 |  8         2349     2[9]* |
| 2      34569  356 | 39  8   1 |  6-9       3469     7     |
'-------------------'-----------'---------------------------'

Almost M2-Wing (*)

Code: Select all
[(9=2)r8c9 - r2c9 = (2-9)r1c8 = (9)r1c7] **
||
||  ------------------------------------- (2)r4c7
||/                                       ||
(2-9)r1c7 = (9-8)r1c8 = r1c2 - (8)r4c2    ||
  \                            ||         (7)r4c7 - (7=9)r5c7 *
   (2)r2c9 = r2c2 ------------ (2)r4c2    ||
                               ||         ||
                               (6)r4c2 -- (6)r4c7

=> -9 r9c7; stte

9x9 TM: Show
Code: Select all
 9r8c9 2r8c9
 9r1c7       9r1c8
       2r2c9 2r1c8 2r1c7
                   2r2c9 2r2c2
                   9r1c7       9r1c8
                               8r1c8 8r1c2
                         2r4c2       8r4c2 6r4c2
                   2r4c7                   6r4c7 7r4c7
 9r5c7                                           7r5c7
------------------------------------------------------
-9r9c7

as a triple kraken: Show
Code: Select all
                        (2-9)b3p2 = (9)r1c7 *
                        ||
              (2)r4c7 - (2)b3p1
              ||        ||
              ||        (2)b3p6 - (2=9)r8c9 *
              ||
* (9=7)r5c7 - (7)r4c7
              ||
              ||        (2)r4c2 - r2c2 = r2c9 - (2=9)r8c9 *
              ||        ||
              (6)r4c7 - (6)r4c2
                        ||
                        (8)r4c2 - r1c2 = (8-9)r1c8 = (9)r1c7 *

=> -9 r9c7; stte

as an AIC: Show
Code: Select all
.-------------------.-----------.-------------------------------.
| 7     d125'8  25  | 4   15  3 | ab5(9)'2*  abc12589*    6     |
| 16    d156'2  4   | 8   15  9 |   3           7       ac125*  |
| 138    1358   9   | 6   2   7 |   4           158       158   |
:-------------------+-----------+-------------------------------:
| 5     d28'6   267 | 1   9   4 | e{7}'26       268       3     |
| 1348   1348   37  | 2   6   5 | e{79}         189       189   |
| 9      126    26  | 7   3   8 |  256          1256      4     |
:-------------------+-----------+-------------------------------:
| 36     7      8   | 39  4   2 |  1            3569      59    |
| 34     349    1   | 5   7   6 |  8            2349     a2[9]* |
| 2      34569  356 | 39  8   1 |  6-9          3469      7     |
'-------------------'-----------'-------------------------------'

Almost M2-Wing

[(92)r82c9 = (2,9)r1c87] = (2,9)r1c78 - (2|8)b3p26 = (2)r1c7&(82,6)r124c2 - (2|6=79)r56c7 => -9 r9c7; stte

Btw, here's a (Hodoku-assisted) variant of the same theme as a single kraken:

Code: Select all
         2c2    [##]                 2c7   [2c8]    2c9
.--------------------.------------.---------------------.
| 7     *1258  A#25  | 4    15  3 | *259  C*12589   6   | 2R1
| 16    *1256    4   | 8    15  9 |  3      7      *125 | 2R2
| 138    1358    9   | 6    2   7 |  4      158     158 |
:--------------------+------------+---------------------:
| 5     *268   B#267 | 1    9   4 | *267  D*268     3   | 2R4
| 1348   1348    37  | 2    6   5 |  79     189     189 |
| 9      126     26  | 7    3   8 |  256    1256    4   |
:--------------------+------------+---------------------:
| 36     7       8   | 39   4   2 |  1      3569    59  |
| 34     349     1   | 5    7   6 |  8    E*2349   *29  | 2R8
| 2      34569   356 | 39   8   1 |  6-9    3469    7   |
'--------------------'------------'---------------------'

Kraken Finned Jellyfish: (2)R1248\c2789 f:r14c3 => [2r14c3 == 2r148c8]

Code: Select all
A#(2)r1c3 - r2c2 = r2c9 - (2=9)r8c9
  ||
B#(2-7)r4c3 = r4c7 - (7=9)r5c7
  ||
C*(2-9)r1c8 = (9)r1c7
  ||
D*(2-8)r4c8 = r4c2 - r1c2 = (8-9)r1c8 = (9)r1c7
  ||
E*(2)r8c8 - (2=9)r8c9

=> -9 r9c7; stte

8x8 TM: Show
Code: Select all
 9r1c7 9r1c8
       8r1c8 8r1c2
             8r4c2 8r4c8
 9r8c9                   2r8c9
                         2r2c9 2r2c2
       2r1c8       2r4c8 2r8c8 2r1c3 2r4c3
                                     7r4c3 7r4c7
 9r5c7                                     7r5c7
------------------------------------------------
-9r9c7

The logic is that if the fins are false the fish is true, as usual, but it also implies that every cover sector must have a true base candidate (Rank 0). Thus any of the cover sets has a personal strong link with the fins and can be used individually as part of a kraken. In this case column 8 works best. Note that 2r6c8 is excluded because it's not a base candidate (otherwise we'd just use the kraken column, of course, but it would be more difficult here).

I explained the logic just in case, because this type of kraken fish usage is not commonly seen here. I doubt it's in the range of most manual players anyway, but it could be useful if the full fish body doesn't have applicable weak links. Another example (totally found by Hodoku) below.

2nd kraken fish sample: Show
Code: Select all
    6C1     6C2
.-----------------------.------------.---------------------.
|   7       1258    25  | 4   B15  3 |   259    12589  6   |
|  *16     *156-2   4   | 8    15  9 |   3      7      125 |  6r2
|   138     1358    9   | 6    2   7 |   4      158    158 |
:-----------------------+------------+---------------------:
|   5      *268     267 | 1    9   4 |  *267   *268    3   |  6r4
|   1348    1348    37  | 2    6   5 |   79     189    189 |         6B6
|   9     C*126     26  | 7    3   8 | D*256  E*1256   4   | [6r6]
:-----------------------+------------+---------------------:
| A#36      7       8   | 39   4   2 |   1      3569   59  |
|   34      349     1   | 5    7   6 |   8      2349   29  |
|   2     B#34569   356 | 39   8   1 |   69     3469   7   |
'-----------------------'------------'---------------------'

Kraken Franken Swordfish (6)C12B6\r246 f:r7c1,r9c2 => [6r7c1|r9c2 == 6r6c278]

Code: Select all
A#(6)r7c1 - r2c1 = (6)r2c2
  ||
B#(6-5)r9c2 = r9c3 - (5=2)r1c3
  ||
C*(6)r6c2 - (6=28)b4p92 - (8=152)r1c523
  ||
D*(6-5)r6c7 = r1c7 - (5=2)r1c3
  ||
E*(6)r6c8 - r7c8 = r7c1 - r2c1 = (6)r2c2

=> -2 r2c2; stte

--
Edit. Added AIC and Kraken Fishes.
Last edited by SpAce on Sat Dec 14, 2019 2:19 pm, edited 1 time in total.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: December 14, 2019

Postby Mauriès Robert » Sat Dec 14, 2019 11:30 am

Hi,
Resolution with TDP starting (as SpAce) from pair 29r8c9.
P(9r8c9) = {9r8c9, 9r1c7,...}
P(2r8c9) = {2r8c9, 29r1c78, 8r1c2, 2r2c2, 6r4c2, 2r6c3, 8r4c8, 2r4c7, 2r1c8, 9r1c7,...}
=> r1c7=9, stte.
(see diagram and puzzle below)
Code: Select all
9r8c9 -> 9r1c7

And,

                          > 8r4c8 - - - - - - > 2r4c7- ->
                         /                  /            |
                  > 8r1c1                  /             |
                /        \                /              |
               /          > 6r4c2 -> 2r6c3               |   
2r8c9 -> 29r1c7          /                               |
               \        /                                |
                 > 2r2c2                                 |
                      \                                  |
                        >- - - - - - - - - - - - - - - - - > 2r1c8 -> 9r1c7


puzzle: Show
Image

Robert
Last edited by Mauriès Robert on Sat Dec 14, 2019 12:20 pm, edited 3 times in total.
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France

Re: December 14, 2019

Postby SpAce » Sat Dec 14, 2019 12:10 pm

Hi Robert,

Thanks for the diagram! Much easier to follow with that!
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: December 14, 2019

Postby Mauriès Robert » Sat Dec 14, 2019 12:46 pm

Hi SpAce,
SpAce wrote:Thanks for the diagram! Much easier to follow with that!

Yes, after your remark on linear chains and complex chains (nets), I understood that it would be useful to use diagrams to better explain the construction of a track.

Here is also, another way to solve the puzzle with an anti-track and Th 2 TDP part 1.

Code: Select all
P'(9r9c2) <=> -9r9c2 -> 2r8c9 -> diagram below

                          > 8r4c8 - - - - - - > 2r4c7- ->
                         /                  /            |
                  > 8r1c1                  /             |
                /        \                /              |
               /          > 6r4c2 -> 2r6c3               |   
2r8c9 -> 29r1c7          /                               |
               \        /                                |
                 > 2r2c2                                 |
                      \                                  |
                        >- - - - - - - - - - - - - - - - - > 2r1c8 -> 9r1c7
=> -9r9c7, stte.

Robert
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France

Re: December 14, 2019

Postby eleven » Sat Dec 14, 2019 7:59 pm

Code: Select all
 *--------------------------------------------------------------*
 |  7     b1258   b25    |  4   b15   3  | h259  h12589   6     |
 |  16    b1256    4     |  8    15   9  |  3     7      a125   |
 |  138    1358    9     |  6    2    7  |  4     158     158   |
 |-----------------------+---------------+----------------------|
 |  5     c268    d267   |  1    9    4  | f267   268     3     |
 |  1348   1348    37    |  2    6    5  |  79    189     189   |
 |  9      126    d26    |  7    3    8  | g256   1256    4     |
 |-----------------------+---------------+----------------------|
 |  36     7       8     |  39   4    2  |  1     3569    59    |
 |  34     349     1     |  5    7    6  |  8     2349    29    |
 |  2      34569  e356   |  39   8    1  | f69    3469    7     |
 *--------------------------------------------------------------*

2r2c = 2518r2c1,r1c352 - (2|8 = *6)r4c2 - r46c3 = r9c3 - *6r49c7 = (6-5)r6c7 = 59r1c78 => -2r1c78, stte
eleven
 
Posts: 3175
Joined: 10 February 2008

Re: December 14, 2019

Postby SpAce » Sat Dec 14, 2019 11:51 pm

eleven wrote: 2r2c = 2518r2c1,r1c352 - (2|8 = *6)r4c2 - r46c3 = r9c3 - *6r49c7 = (6-5)r6c7 = 59r1c78 => -2r1c78, stte

Very nice. Again you need the comma, though:

2r2c9 = (2,518)r2c2,r1c352 - (2|8=6*)r4c2 ...

...or explicitly (2nd node: r1c78 used to avoid repetition, could be r2c2 too):

2r2c9 = r1c78 - r1c23 = 2r2c2 & 518r1c352 - (2|8=6*)r4c2 ...

Otherwise the following weak link doesn't work properly because 2r1c3 doesn't see 2r4c2. Same thing as yesterday.

--
Btw, some would prefer this but I don't particularly like it:

2r2c9 = 2r2c2 & 518r1c352 - (2|8=6*)r4c2 ...

Its problem is that 518r1c352 is not directly strongly-linked with 2r2c9 but dependent on 2r2c2. The comma is better because it implies such internal interactions within the node while '&' doesn't. (It's not incorrect, though. It just skips part of the logic flow.)
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: December 14, 2019

Postby rjamil » Thu Dec 19, 2019 4:04 pm

Code: Select all
 +-------------------+-----------------------+-------------------------+
 | 2357  1247  12345 | 24569   8       23459 | 345679  13479   1345679 |
 | 358   (48)  9     | 7       356-4   1     | 2       34      3456    |
 | 2357  6     12345 | 2459    2345    23459 | 34579   8       134579  |
 +-------------------+-----------------------+-------------------------+
 | 1     9-4   456   | 4589    (45)    45789 | 3678    37      2       |
 | 69    3     246   | 12489   124     24789 | 678     5       67      |
 | 258   (28)  7     | 3       (25)    6     | 1       49      49      |
 +-------------------+-----------------------+-------------------------+
 | 237   5     1238  | 1248    9       2348  | 347     6       1347    |
 | 4     129   1236  | 1256    7       235   | 359     1239    8       |
 | 69    1279  12368 | 124568  123456  23458 | 34579   123479  134579  |
 +-------------------+-----------------------+-------------------------+

Almost Locked Set move: 2458 @ r26c2 r46c5 => -4 @ r4c2 r2c5; stte

R. Jamil
rjamil
 
Posts: 787
Joined: 15 October 2014
Location: Karachi, Pakistan


Return to Puzzles