- Code: Select all
*-----------*
|...|...|...|
|...|.8.|7.5|
|9.6|.47|.2.|
|---+---+---|
|4.9|7..|..6|
|..7|.6.|5..|
|2..|..8|9.7|
|---+---+---|
|.7.|41.|8.9|
|1.2|.9.|...|
|...|...|...|
*-----------*
Play/Print this puzzle online
*-----------*
|...|...|...|
|...|.8.|7.5|
|9.6|.47|.2.|
|---+---+---|
|4.9|7..|..6|
|..7|.6.|5..|
|2..|..8|9.7|
|---+---+---|
|.7.|41.|8.9|
|1.2|.9.|...|
|...|...|...|
*-----------*
+--------------------+----------------------+--------------------+
| 7 1258 a158 | 12356 35 13569 | 46 1369 134-8|
| 3 124 14 | 126 8 169 | 7 169 5 |
| 9 15-8 6 | 135 4 7 |e1*3 2 f138 |
+--------------------+----------------------+--------------------+
| 4 135 9 | 7 2 d15 |d13 8 6 |
| 8 13 7 | 9 6 4 | 5 13 2 |
| 2 6 15 | 135 35 8 | 9 4 7 |
+--------------------+----------------------+--------------------+
| 56 7 3 | 4 1 2 | 8 56 9 |
| 1 c48 2 | 3568 9 c356 |c46 7 c3*4 |
| 56 9 b48 | 368 7 36 | 2 1356 134 |
+--------------------+----------------------+--------------------+
.-------------------.------------------.------------------.
| 7 258-1 158 | 12356 35 13569 | 46 1369 1348 |
| 3 24-1 a(1)4 | 126 8 169 | 7 169 5 |
| 9 58-1 6 | 135 4 7 | 13 2 138 |
:-------------------+------------------+------------------:
| 4 135 9 | 7 2 15 | 13 8 6 |
| 8 d(1)3 7 | 9 6 4 | 5 d13 2 |
| 2 6 5-1 | 135 35 8 | 9 4 7 |
:-------------------+------------------+------------------:
| 56 7 3 | 4 1 2 | 8 56 9 |
| 1 48 2 | 3568 9 356 | 46 7 34 |
| 56 9 b48 | 368 7 36 | 2 c1356 c134 |
'-------------------'------------------'------------------'
*---------------------------------------------------------------------*
| 7 1258 158 | 12356 bc5-3 13569 | 46 1369 1348 |
| 3 124 14 | 126 8 169 | 7 169 5 |
| 9 g158 6 |d135 4 7 |d13 2 eh138 |
*----------------------+-----------------------+----------------------|
| 4 135 9 | 7 2 bc15 |c13 8 6 |
| 8 13 7 | 9 6 4 | 5 13 2 |
| 2 6 15 | 15-3 a35 8 | 9 4 7 |
*----------------------+-----------------------+----------------------|
| 56 7 3 | 4 1 2 | 8 56 9 |
| 1 f48 2 | 3568 9 356 | 46 7 f34 |
| 56 9 48 | 368 7 36 | 2 1356 134 |
*---------------------------------------------------------------------*
SteveG48 wrote:(3=5)r6c5 ... Contradiction => -3 r1c5,r6c4 ; stte
+--------------------+-----------------------+---------------------+
| 7 a1258# b158 | a12356# 35 13569 | 46 1369 E1348 |
| 3 124 14 | 126 8 169 | 7 169 5 |
| 9 158* 6 | 135* 4 7 | D13 2 E138 |
+--------------------+-----------------------+---------------------+
| 4 d135* 9 | 7 2 Be15* | C13 8 6 |
| 8 13 7 | 9 6 4 | 5 13 2 |
| 2 6 c15 | 135* A35# 8 | 9 4 7 |
+--------------------+-----------------------+---------------------+
| 56 7 3 | 4 1 2 | 8 56 9 |
| 1 48 2 | y3568# 9 zf356 |zf46 7 zf34 |
| 56 9 48 | 368 7 36 | 2 1356 F13-4 |
+--------------------+-----------------------+---------------------+
SpAce wrote:SteveG48 wrote:(3=5)r6c5 ... Contradiction => -3 r1c5,r6c4 ; stte
Hi Steve! I'm perfectly fine with your contradiction proof, but speaking of clarity, I think it would be better to conclude +3r6c5 (or just 3r6c5). It's the direct conclusion since your initial assumption is -3r6c5 (which you prove false). The eliminations of course follow that, but they're not the direct conclusion of your chain. Another possibility is to start the chain (3)r6c4 - (3=5)r6c5... and then conclude -3 r6c4. (That'd be a more typical Nishio, although starting with a negative assumption works just as well.)
SteveG48 wrote:True enough. Also, -5 r6c5 works for me.
On yours, I like your solution a lot, but I still wish you would drop the practice of putting links in the cell set designator.
*------------------------------------------------------------------*
| 7 1258 158 | 12356 d35 13569 | 46 1369 1348 |
| 3 124 14 | 126 8 169 | 7 169 5 |
| 9 158 6 | d135 4 7 | 1-3 2 138 |
|--------------------+-----------------------+---------------------|
| 4 135 9 | 7 2 b15 | a13 8 6 |
| 8 13 7 | 9 6 4 | 5 13 2 |
| 2 6 15 | c135 c35 8 | 9 4 7 |
|--------------------+-----------------------+---------------------|
| 56 7 3 | 4 1 2 | 8 56 9 |
| 1 48 2 | 3568 9 356 | 46 7 34 |
| 56 9 48 | 368 7 36 | 2 1356 134 |
*------------------------------------------------------------------*
eleven wrote: Maybe others find a better way to write it.
(3=1)r4c7 - r4c6 = hp13r6c45 - 1r3c4|3r1c5 = 3r3c4 => -3r3c7, stte
eleven wrote:
- Code: Select all
*------------------------------------------------------------------*
| 7 1258 158 | 12356 d35 13569 | 46 1369 1348 |
| 3 124 14 | 126 8 169 | 7 169 5 |
| 9 158 6 | d135 4 7 | 1-3 2 138 |
|--------------------+-----------------------+---------------------|
| 4 135 9 | 7 2 b15 | a13 8 6 |
| 8 13 7 | 9 6 4 | 5 13 2 |
| 2 6 15 | c135 c35 8 | 9 4 7 |
|--------------------+-----------------------+---------------------|
| 56 7 3 | 4 1 2 | 8 56 9 |
| 1 48 2 | 3568 9 356 | 46 7 34 |
| 56 9 48 | 368 7 36 | 2 1356 134 |
*------------------------------------------------------------------*
Maybe others find a better way to write it.
The logic is, that if not 3 but 1 in r4c7, you get 13 in r6c56, and 3r3c4,5r1c5.
(3=1)r4c7 - r4c6 = hp13r6c56 - 1r3c4|3r1c5 = 3r3c4 => -3r3c7, stte
SteveG48 wrote:eleven wrote: The logic is, that if not 3 but 1 in r4c7, you get 13 in r6c56, and 3r3c4,5r1c5.
(3=1)r4c7 - r4c6 = hp13r6c56 - 1r3c4|3r1c5 = 3r3c4 => -3r3c7, stte
Nice solution. I'd write it:
(3=15)r4c67 - (5=13)r6c45 - (3r1c5)|(1r3c4) = (5r1c5)&(3r3c4) => -3 r3c7
I know it looks complicated, and illustrates the weakness of Eureka, but sometimes spelling out the results for each individual cell in a node makes things clear.