.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------------+-------------------------+-------------------------+
! 1234578 12378 12345 ! 12346 12679 134679 ! 1235689 1389 13569 !
! 12345 123 9 ! 8 126 1346 ! 12356 13 7 !
! 12378 6 123 ! 123 5 1379 ! 12389 4 139 !
+-------------------------+-------------------------+-------------------------+
! 1279 4 6 ! 12 3 189 ! 1789 5 19 !
! 1359 139 8 ! 7 169 14569 ! 13469 139 2 !
! 123579 12379 1235 ! 12456 12689 145689 ! 1346789 13789 13469 !
+-------------------------+-------------------------+-------------------------+
! 134689 1389 134 ! 1356 1678 2 ! 134579 1379 13459 !
! 1346 13 7 ! 9 16 1356 ! 1345 2 8 !
! 12389 5 123 ! 13 4 1378 ! 1379 6 139 !
+-------------------------+-------------------------+-------------------------+
1) Normal solution, using only Subsets - quite a lot of them (33):hidden-pairs-in-a-block: b8{n7 n8}{r7c5 r9c6} ==> r9c6 ≠ 3, r9c6 ≠ 1, r7c5 ≠ 6, r7c5 ≠ 1
naked-triplets-in-a-column: c9{r3 r4 r9}{n3 n9 n1} ==> r7c9 ≠ 9, r7c9 ≠ 3, r7c9 ≠ 1, r6c9 ≠ 9, r6c9 ≠ 3, r6c9 ≠ 1, r1c9 ≠ 9, r1c9 ≠ 3, r1c9 ≠ 1
naked-triplets-in-a-column: c4{r3 r4 r9}{n3 n2 n1} ==> r7c4 ≠ 3, r7c4 ≠ 1, r6c4 ≠ 2, r6c4 ≠ 1, r1c4 ≠ 3, r1c4 ≠ 2, r1c4 ≠ 1
x-wing-in-columns: n3{c4 c9}{r3 r9} ==> r9c7 ≠ 3, r9c3 ≠ 3, r9c1 ≠ 3, r3c7 ≠ 3, r3c6 ≠ 3, r3c3 ≠ 3, r3c1 ≠ 3
naked-pairs-in-a-column: c3{r3 r9}{n1 n2} ==> r7c3 ≠ 1, r6c3 ≠ 2, r6c3 ≠ 1, r1c3 ≠ 2, r1c3 ≠ 1
swordfish-in-columns: n1{c3 c4 c9}{r9 r3 r4} ==> r9c7 ≠ 1, r9c1 ≠ 1, r4c7 ≠ 1, r4c6 ≠ 1, r4c1 ≠ 1, r3c7 ≠ 1, r3c6 ≠ 1, r3c1 ≠ 1
naked-triplets-in-a-column: c6{r3 r4 r9}{n7 n9 n8} ==> r6c6 ≠ 9, r6c6 ≠ 8, r5c6 ≠ 9, r1c6 ≠ 9, r1c6 ≠ 7
hidden-pairs-in-a-block: b2{n7 n9}{r1c5 r3c6} ==> r1c5 ≠ 6, r1c5 ≠ 2, r1c5 ≠ 1
finned-x-wing-in-columns: n2{c5 c2}{r6 r2} ==> r2c1 ≠ 2
swordfish-in-columns: n4{c3 c4 c9}{r7 r1 r6} ==> r7c7 ≠ 4, r7c1 ≠ 4, r6c7 ≠ 4, r6c6 ≠ 4, r1c6 ≠ 4, r1c1 ≠ 4
swordfish-in-columns: n7{c2 c5 c8}{r6 r1 r7} ==> r7c7 ≠ 7, r6c7 ≠ 7, r6c1 ≠ 7, r1c1 ≠ 7
swordfish-in-rows: n8{r3 r4 r9}{c1 c7 c6} ==> r7c1 ≠ 8, r6c7 ≠ 8, r1c7 ≠ 8, r1c1 ≠ 8
hidden-pairs-in-a-block: b1{n7 n8}{r1c2 r3c1} ==> r3c1 ≠ 2, r1c2 ≠ 3, r1c2 ≠ 2, r1c2 ≠ 1
hidden-pairs-in-a-block: b6{n7 n8}{r4c7 r6c8} ==> r6c8 ≠ 9, r6c8 ≠ 3, r6c8 ≠ 1, r4c7 ≠ 9
x-wing-in-columns: n2{c2 c5}{r2 r6} ==> r6c1 ≠ 2, r2c7 ≠ 2
hidden-pairs-in-a-block: b4{n2 n7}{r4c1 r6c2} ==> r6c2 ≠ 9, r6c2 ≠ 3, r6c2 ≠ 1, r4c1 ≠ 9
hidden-triplets-in-a-row: r6{n2 n7 n8}{c5 c2 c8} ==> r6c5 ≠ 9, r6c5 ≠ 6, r6c5 ≠ 1
finned-x-wing-in-rows: n9{r6 r9}{c1 c7} ==> r7c7 ≠ 9
swordfish-in-columns: n9{c2 c5 c8}{r7 r5 r1} ==> r7c1 ≠ 9, r5c7 ≠ 9, r5c1 ≠ 9, r1c7 ≠ 9
hidden-pairs-in-a-block: b7{n8 n9}{r7c2 r9c1} ==> r9c1 ≠ 2, r7c2 ≠ 3, r7c2 ≠ 1
singles ==> r9c3 = 2, r3c3 = 1
hidden-pairs-in-a-row: r9{n1 n3}{c4 c9} ==> r9c9 ≠ 9
hidden-pairs-in-a-block: b9{n7 n9}{r7c8 r9c7} ==> r7c8 ≠ 3, r7c8 ≠ 1
x-wing-in-columns: n9{c6 c9}{r3 r4} ==> r3c7 ≠ 9
hidden-triplets-in-a-row: r1{n7 n8 n9}{c5 c2 c8} ==> r1c8 ≠ 3, r1c8 ≠ 1
hidden-pairs-in-a-column: c8{n1 n3}{r2 r5} ==> r5c8 ≠ 9
swordfish-in-columns: n1{c2 c5 c8}{r5 r8 r2} ==> r8c7 ≠ 1, r8c6 ≠ 1, r8c1 ≠ 1, r5c7 ≠ 1, r5c6 ≠ 1, r5c1 ≠ 1, r2c7 ≠ 1, r2c6 ≠ 1
naked-pairs-in-a-block: b4{r5c1 r6c3}{n3 n5} ==> r6c1 ≠ 5, r6c1 ≠ 3, r5c2 ≠ 3
swordfish-in-rows: n5{r2 r5 r8}{c7 c1 c6} ==> r7c7 ≠ 5, r6c6 ≠ 5, r1c7 ≠ 5, r1c1 ≠ 5
naked-pairs-in-a-block: b1{r1c1 r2c2}{n2 n3} ==> r2c1 ≠ 3, r1c3 ≠ 3
naked-pairs-in-a-block: b9{r7c7 r9c9}{n1 n3} ==> r8c7 ≠ 3
hidden-pairs-in-a-block: b5{n4 n5}{r5c6 r6c4} ==> r6c4 ≠ 6, r5c6 ≠ 6
naked-triplets-in-a-row: r1{c3 c4 c9}{n5 n4 n6} ==> r1c7 ≠ 6, r1c6 ≠ 6
hidden-pairs-in-a-block: b3{n5 n6}{r1c9 r2c7} ==> r2c7 ≠ 3
PUZZLE 0 IS NOT SOLVED. 58 VALUES MISSING.
- Code: Select all
Resolution state:
23 78 45 46 79 13 123 89 56
45 23 9 8 126 346 56 13 7
78 6 1 23 5 79 28 4 39
27 4 6 12 3 89 78 5 19
35 19 8 7 169 45 346 13 2
19 27 35 45 28 16 1369 78 46
136 89 34 56 78 2 13 79 45
346 13 7 9 16 356 45 2 8
89 5 2 13 4 78 79 6 13
Subsets are not enough but a single bivalue-chain[2] will give the solution:
biv-chain[2]: c8n3{r5 r2} - b1n3{r2c2 r1c1} ==> r5c1 ≠ 3
stte
2) Is there any 1-step solution?Starting from the resolution state after Singles and whips[1], there are 27 W1-anti-backdoors:
n7r1c2 n4r1c3 n8r1c8 n5r1c9 n5r2c1 n4r2c6 n8r3c1 n7r3c6 n7r4c1 n2r4c4 n8r4c7 n5r5c6 n4r5c7 n5r6c3 n4r6c4 n8r6c5 n7r6c8 n6r6c9 n6r7c1 n8r7c2 n5r7c4 n7r7c5 n4r7c9 n4r8c1 n5r8c7 n8r9c6 n7r9c7
but none of them leads to a 1-step solution whith whips of reasonable length.
Now, cheating by starting with the resolution state after Pairs:
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 1234578 12378 12345 ! 12346 12679 134679 ! 1235689 1389 13569 !
! 12345 123 9 ! 8 126 1346 ! 12356 13 7 !
! 12378 6 123 ! 123 5 1379 ! 12389 4 139 !
+-------------------------+-------------------------+-------------------------+
! 1279 4 6 ! 12 3 189 ! 1789 5 19 !
! 1359 139 8 ! 7 169 14569 ! 13469 139 2 !
! 123579 12379 1235 ! 12456 12689 145689 ! 1346789 13789 13469 !
+-------------------------+-------------------------+-------------------------+
! 134689 1389 134 ! 1356 78 2 ! 134579 1379 13459 !
! 1346 13 7 ! 9 16 1356 ! 1345 2 8 !
! 12389 5 123 ! 13 4 78 ! 1379 6 139 !
+-------------------------+-------------------------+-------------------------+
There are 39 S2-anti-backdoors:
n7r1c2 n4r1c3 n6r1c4 n8r1c8 n5r1c9 n5r2c1 n2r2c5 n4r2c6 n6r2c7 n8r3c1 n3r3c4 n7r3c6 n7r4c1 n2r4c4 n8r4c7 n1r4c9 n9r5c2 n6r5c5 n5r5c6 n4r5c7 n5r6c3 n4r6c4 n8r6c5 n7r6c8 n6r6c9 n6r7c1 n8r7c2 n5r7c4 n7r7c5 n4r7c9 n4r8c1 n1r8c2 n6r8c5 n3r8c6 n5r8c7 n1r9c4 n8r9c6 n7r9c7 n3r9c9
and one can indeed find two absurdly long whips (for a puzzle solvable by patterns of size ≤ 3) leading to 1-step solutions (modulo Pairs):
- Code: Select all
whip-rn[7]: r8n5{c6 c7} - r2n5{c7 c1} - r5n5{c1 c6} - r5n4{c6 c7} - r8n4{c7 c1} - r8n6{c1 c5} - r5n6{c5 .} ==> r8c6 ≠ 3
btte
- Code: Select all
whip[8]: c6n3{r3 r8} - r8n5{c6 c7} - r2n5{c7 c1} - r5n5{c1 c6} - c4n5{r6 r7} - b8n6{r7c4 r8c5} - r5n6{c5 c7} - r5n4{c7 .} ==> r3c4 ≠ 3
btte
Not only are these solutions not really one-step (they need Pairs before and after the whip) but, needless to say, there's no chance any human solver can find these manually.