- Code: Select all
-  2 9 5 | 7 . . | 8 6 1 
 . 3 1 | 8 6 5 | 9 2 .
 8 . 6 | . . . | . . .
 -------+-------+------
 . . 7 | . 5 . | . . 6
 . . . | 3 8 7 | . . .
 5 . . | . 1 6 | 7 . .
 -------+-------+------
 . . . | 5 . . | 1 . 9
 . 2 . | 6 . . | 3 5 .
 . 5 4 | . . 8 | 6 7 2
- Code: Select all
-  
 2      9      5      | 7      34     34     | 8      6      1
 47     3      1      | 8      6      5      | 9      2      47
 8      47     6      | 1249   2349   12349  | 45     34     3457
 ---------------------+----------------------+-------------------
 1349   148    7      | 249    5      249    | 24     13489  6
 1469   146    29     | 3      8      7      | 245    149    45
 5      48     2389   | 249    1      6      | 7      3489   348
 ---------------------+----------------------+-------------------
 367    678    38     | 5      2347   234    | 1      48     9
 179    2      89     | 6      479    149    | 3      5      48
 139    5      4      | 19     39     8      | 6      7      2
1) r1c56=[34][34]; this is a "naked pair"; it eliminates other 3's and 4's from the rest of box 2.
2) After (1), r46c4 are the only two cells in column 4 that can hold a 4; This is "locked candidates"; eliminate the other 4 from box 5
3) r78c1 are the only two cells that can hold a 1 in box 7. This are "locked candidates"; elimiate other 1's from column 1
4) r4c7+r5c7+r5c9=[24][245][45]; this is a "naked triple"; it eliminates other 2s, 4s and 5s from box 6.
5) r4c467=[249][249][24]; another "naked triple"; it eliminates other 2s, 4s and 9s from from row 4.
After these eliminations, several singles are possible. Updating the grid:
- Code: Select all
-  2 9 5 | 7 4 3 | 8 6 1 
 . 3 1 | 8 6 5 | 9 2 .
 8 . 6 | . . . | . . .
 -------+-------+------
 3 . 7 | . 5 . | . . 6
 . . . | 3 8 7 | . . .
 5 . . | . 1 6 | 7 . .
 -------+-------+------
 . . 3 | 5 . . | 1 . 9
 . 2 . | 6 . . | 3 5 .
 . 5 4 | . 3 8 | 6 7 2
- Code: Select all
- 2     9     5     | 7     4     3     | 8     6     1   
 47    3     1     | 8     6     5     | 9     2     47
 8     47    6     | 129   29    129   | 45    34    3457
 ------------------+-------------------+-----------------
 3    *18    7     | 249   5     29    | 24   *18    6
 469   146   29    | 3     8     7     | 245   19    45
 5    x48    289   | 249   1     6     | 7    x389   38
 ------------------+-------------------+-----------------
 67   *678   3     | 5     27    24    | 1    *48    9
 179   2     89    | 6     79    149   | 3     5     48
 19    5     4     | 19    3     8     | 6     7     2
6) There are only two places for a 9 in row 4, both of which are in box 5. This is locked candidates. The other 4 in box 5 is excluded.
7) There are only two cells in ROWS 4 and 7 that can hold an 8 (marked above with '*') -- all are in COLUMNS 2 and 8. This is an "x-wing". All other 8s in those two COLUMNS are eliminated (marked above with 'x')
After these eliminations, several singles are possible. Updating the grid:
- Code: Select all
-  2 9 5 | 7 4 3 | 8 6 1 
 4 3 1 | 8 6 5 | 9 2 7
 8 7 6 | . . . | . . .
 -------+-------+------
 3 . 7 | 4 5 9 | 2 . 6
 . . 2 | 3 8 7 | . . .
 5 4 . | 2 1 6 | 7 . .
 -------+-------+------
 . . 3 | 5 . . | 1 . 9
 . 2 . | 6 . . | 3 5 .
 . 5 4 | . 3 8 | 6 7 2
- Code: Select all
- 2    9    5    | 7    4    3    | 8    6    1  
 4    3    1    | 8    6    5    | 9    2    7
 8    7    6    | 19   29   12   | 45   34   345
 ---------------+----------------+--------------
 3    18   7    | 4    5    9    | 2    18   6
 69   16   2    | 3    8    7    | 45   19   45
 5    4    89   | 2    1    6    | 7    39   38
 ---------------+----------------+--------------
 67   68   3    | 5    27   24   | 1    48   9
 179  2    89   | 6    79   14   | 3    5    48
 19   5    4    | 19   3    8    | 6    7    2
There are lots of fun ways to finish off the puzzle. Which to use is a matter of taste.
The four cells r35c79 form a UNIQUE RECTANGLE. If r3c9 was [45] the puzzle would have multiple soltions. This is not allowed. Therefore, r3c9=3. After this, the rest of the puzzle is singles.
OR
r8c1+r8c5+r9c1 form an XYZ-wing. No matter WHAT value you place in ANY one of these three cells, the immediate result is that r8c3<>9. Therefore, r8c3=8 and the rest of the puzzle is just singles.
OR
8c) There are dozens of simple xy-type forcing chains of various lengths, all of which will solve the puzzle. For example, here's a five cell chain:
r9c1=1 -> r9c4=9
r9c1=9 -> r8c3=8 -> r8c9=4 -> r8c6=1 -> r9c4=9
Therefore, r9c4=9
This can be expressed as a nice loop:
[r9c1]-9-[r8c3]-8-[r8c9]-4-[r8c5]-1-[r9c4]-9-[r9c1] --> r9c1<>1
OR
There only two unsolved cells with three candidates, the rest have only two. The 'tri-value' cells are r8c1 and r3c9. If r8c1 were [17] instead of [179] and r3c9 were [35] instead of [345], the puzzle would have mutliple solutions (this is BUG -- bivalue universal grave). Therefore, either r8c1=9 OR r3c9=4 OR both.
This allows another 5 cell forcing chain using BUG avoidance as one link:
r8c9=8 -> r8c2=9 -> r8c5=7
r8c9=4 -> r3c9<>4 -> r8c9=9 -> r8c5=7
Therefore, r8c5=7