Dan's Doodad December 8, 2013

Post puzzles for others to solve here.

Dan's Doodad December 8, 2013

Postby ArkieTech » Sun Dec 08, 2013 12:23 am

Code: Select all
 *-----------*
 |.3.|81.|4..|
 |...|934|..1|
 |1..|2..|...|
 |---+---+---|
 |.2.|.6.|853|
 |65.|378|.94|
 |348|.9.|.1.|
 |---+---+---|
 |...|..5|..6|
 |7..|189|...|
 |..2|.43|.7.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Doodad December 8, 2013

Postby Leren » Sun Dec 08, 2013 12:53 am

Code: Select all
*--------------------------------------------------------------*
| 25    3    f9-56   | 8     1     7      | 4     26   e59     |
| 258   78   a56     | 9     3     4      |d57    26    1      |
| 1     79    4      | 2     5     6      | 379   38    89     |
|--------------------+--------------------+--------------------|
| 9     2     7      | 4     6     1      | 8     5     3      |
| 6     5     1      | 3     7     8      | 2     9     4      |
| 3     4     8      | 5     9     2      | 6     1     7      |
|--------------------+--------------------+--------------------|
| 4     189   39     | 7     2     5      | 139   38    6      |
| 7     6    b35     | 1     8     9      |c35    4     2      |
| 58    189   2      | 6     4     3      | 159   7     589    |
*--------------------------------------------------------------*

(6=5) r2c3 - (5) r8c3 = r8c7 - r2c7 = (5-9) r1c9 = (9) r1c3 => - 56 r1c3; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Dan's Doodad December 8, 2013

Postby SteveG48 » Sun Dec 08, 2013 3:22 am

Code: Select all
.---------------.---------.--------------.
| 25   3   a569 | 8  1  7 | 4    26  59  |
| 258  78   56  | 9  3  4 | 57   26  1   |
| 1    f79  4   | 2  5  6 | g379 h38 I89 |
:---------------+---------+--------------:
| 9    2    7   | 4  6  1 | 8    5   3   |
| 6    5    1   | 3  7  8 | 2    9   4   |
| 3    4    8   | 5  9  2 | 6    1   7   |
:---------------+---------+--------------:
| 4    189  b39 | 7  2  5 | 139  38  6   |
| 7    6    c35 | 1  8  9 | 35   4   2   |
| d58  189  2   | 6  4  3 | 159  7 ej589 |
'---------------'---------'--------------'


Parallel chains:

(9)r1c3 = {(9-3)r7c3 = (3-5)r8c3 = (5)r9c1 - (5)r9c9}|{(9-7)r3c2 = (7-3)r3c7 = (3-8)r3c8 = (8)r3c9 - (8)r9c9} = (9)r9c9 => -9 r1c9 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Doodad December 8, 2013

Postby SteveG48 » Sun Dec 08, 2013 3:36 am

Leren wrote:
Code: Select all
*--------------------------------------------------------------*
| 25    3    f9-56   | 8     1     7      | 4     26   e59     |
| 258   78   a56     | 9     3     4      |d57    26    1      |
| 1     79    4      | 2     5     6      | 379   38    89     |
|--------------------+--------------------+--------------------|
| 9     2     7      | 4     6     1      | 8     5     3      |
| 6     5     1      | 3     7     8      | 2     9     4      |
| 3     4     8      | 5     9     2      | 6     1     7      |
|--------------------+--------------------+--------------------|
| 4     189   39     | 7     2     5      | 139   38    6      |
| 7     6    b35     | 1     8     9      |c35    4     2      |
| 58    189   2      | 6     4     3      | 159   7     589    |
*--------------------------------------------------------------*

(6=5) r2c3 - (5) r8c3 = r8c7 - r2c7 = (5-9) r1c9 = (9) r1c3 => - 56 r1c3; stte

Leren


Leren, I guess I'm slow tonight, because I don't follow the logic. I can see where you've shown that if r2c3 is not a 6, then r1c3 must be a 9. But what if r2c3 is a 6? In fact, I see that you've proved that r2c3 is, in fact, a 6, but that leaves you with a 3,5,9 triple on column 3.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Doodad December 8, 2013

Postby Leren » Sun Dec 08, 2013 4:33 am

SteveG48 wrote: (6=5) r2c3 - (5) r8c3 = r8c7 - r2c7 = (5-9) r1c9 = (9) r1c3 => - 56 r1c3; stte

Leren, I guess I'm slow tonight, because I don't follow the logic. I can see where you've shown that if r2c3 is not a 6, then r1c3 must be a 9. But what if r2c3 is a 6?

Hi Steve, if you look at the chain carefully you'll see that it establishes 2 things:

1. If r2c3 <> 6 then r1c3 = 9 ( in particular <> 6), but also

2. If r8c3 <> 5 then r1c3 = 9 ( in particular <> 5). [Just ignore the first term in the chain and you'll see that it's true].

Obviously if r2c3 = 6 then r1c3 <> 6 => - 6 r1c3 and if r8c3 = 5 then r1c3 <> 5 => - 5 r1c3.

You can state this differently in words and it might be more intuitive: If r8c3 <> 5 then r1c3 = 9 ( in particular <> 5, 6). However if r8c3 = 5 then r1c3 <> 5 but also r2c3 <> 5 (= 6) so r1c3 <> 6 => - 56 r1c3.

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Dan's Doodad December 8, 2013

Postby ronk » Sun Dec 08, 2013 5:03 am

SteveG48 wrote:Leren, I guess I'm slow tonight, because I don't follow the logic. I can see where you've shown that if r2c3 is not a 6, then r1c3 must be a 9. But what if r2c3 is a 6? In fact, I see that you've proved that r2c3 is, in fact, a 6, but that leaves you with a 3,5,9 triple on column 3.

SteveG48, it might help to think of it as two different chains:

Code: Select all
             (5) r8c3 = r8c7 - r2c7 = (5-9) r1c9 = (9) r1c3 => - 5 r1c3
(6=5) r2c3 - (5) r8c3 = r8c7 - r2c7 = (5-9) r1c9 = (9) r1c3 => - 6 r1c3; stte
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Dan's Doodad December 8, 2013

Postby SteveG48 » Sun Dec 08, 2013 5:16 am

Thanks, Leren, Ronk. I wondered about the underlining in the chain. Now I see the significance.

This is a really pretty little puzzle- and a pretty solution.

The more I look at it, the neater it looks. Is that called something in particular?

The way I like to look at it is that 9 in r1c3 is a weak link to the 5,6 pair in r1c3, followed by strong links to the 6 in r2c3 and the 5 in r7c3, setting 5 and 6 in those cells and excluding them in r1c3.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Doodad December 8, 2013

Postby DonM » Sun Dec 08, 2013 6:10 am

SteveG48 wrote:Thanks, Leren, Ronk. I wondered about the underlining in the chain. Now I see the significance.

This is a really pretty little puzzle- and a pretty solution.

The more I look at it, the neater it looks. Is that called something in particular?

The way I like to look at it is that 9 in r1c3 is a weak link to the 5,6 pair in r1c3, followed by strong links to the 6 in r2c3 and the 5 in r7c3, setting 5 and 6 in those cells and excluding them in r1c3.


This was given the name 'pausing chain' some time ago whereby the chain 'pauses' (figuratively speaking) for a moment to declare another elimination using the point at the 2nd underline the same as if it was the beginning of the chain. You can also use a '*' to indicate the point of pausing.

You will also see pausing chains where the chain is continued beyond the point of a first elimination to a point of yet another elimination.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Dan's Doodad December 8, 2013

Postby Leren » Sun Dec 08, 2013 6:15 am

SteveG48 wrote: Is that called something in particular?

"Technically" this is an L2 Wing: (5) r8c3 = r8c7 - r2c7 = (5-9) r1c9 = (9) r1c3 + a bi-value extension Cell r2c3.
The extension cell must see both ends of the L2 Wing and contain one of the end candidates (5 or 9) plus one other candidate (6). The ''other'' candidate can be eliminated from the end of the AIC not containing the
Strong link to the bi-value cell end candidate (5).

Of course this works for any AIC Type 2 - not just L2 wings.

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Dan's Doodad December 8, 2013

Postby pjb » Sun Dec 08, 2013 10:27 am

Code: Select all
 25     3      569    | 8      1      7      | 4      26     59     
 258    78     56     | 9      3      4      | 57     26     1     
 1     b79     4      | 2      5      6      |c379    38     89     
 ---------------------+----------------------+---------------------
 9      2      7      | 4      6      1      | 8      5      3     
 6      5      1      | 3      7      8      | 2      9      4     
 3      4      8      | 5      9      2      | 6      1      7     
 ---------------------+----------------------+---------------------
 4     a189    39     | 7      2      5      |c139    38     6     
 7      6      35     | 1      8      9      |c35     4      2     
a58    a189    2      | 6      4      3      |c159    7      89-5   


(5=9) r7c2, r9c12 - (9=7) r3c2 - (7=5) r3789c7 => -5 r9c9; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Dan's Doodad December 8, 2013

Postby ArkieTech » Sun Dec 08, 2013 11:35 am

Code: Select all
 *--------------------------------------------------*
 | 25   3   b569  | 8    1    7    | 4    26  c59   |
 | 258  78   56   | 9    3    4    | 57   26   1    |
 | 1    79   4    | 2    5    6    | 379  38   89   |
 |----------------+----------------+----------------|
 | 9    2    7    | 4    6    1    | 8    5    3    |
 | 6    5    1    | 3    7    8    | 2    9    4    |
 | 3    4    8    | 5    9    2    | 6    1    7    |
 |----------------+----------------+----------------|
 | 4    189 a39   | 7    2    5    | 139  38   6    |
 | 7    6   a35   | 1    8    9    | 3-5  4    2    |
 | 8-5  189  2    | 6    4    3    | 159  7   d589  |
 *--------------------------------------------------*
als m-wing
(5=9)r78c3-r1c3=(9-5)r1c9=5r9c9 -5r8c7,r9c1; ste
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Doodad December 8, 2013

Postby eleven » Sun Dec 08, 2013 1:45 pm

pjb wrote:(5=9) r7c2, r9c12 - (9=7) r3c2 - (7=5) r3789c7 => -5 r9c9; stte

ArkieTech wrote:(5=9)r78c3-r1c3=(9-5)r1c9=5r9c9 -5r8c7,r9c1; ste


Normally i would write it, as i found it:
Almost pair 56+9 in r12c3:
r1c3=9 -> r1c9=5
r12c3=56 -> r8c7=5 (through r8c3<>5)
or
(5=9)r1c9-r1c3=(9-3)r7c3=(3-5)r8c3=5r8c7

But you seem to like that one more:
(5=9)r1c9-(9=356)r128c3-(3=5)r8c7 => r23c7,r9c9<>5
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: Dan's Doodad December 8, 2013

Postby SteveG48 » Sun Dec 08, 2013 2:37 pm

Leren wrote:
SteveG48 wrote: Is that called something in particular?

"Technically" this is an L2 Wing:


Thanks, Leren. I see you making good use of things I haven't learned about like L2 and H2 wings. Can you point me to a reference on these?
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Doodad December 8, 2013

Postby SteveG48 » Sun Dec 08, 2013 2:49 pm

DonM wrote:
SteveG48 wrote:The more I look at it, the neater it looks. Is that called something in particular?


This was given the name 'pausing chain' some time ago whereby the chain 'pauses' (figuratively speaking) for a moment to declare another elimination using the point at the 2nd underline the same as if it was the beginning of the chain.


Thanks, Don.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Doodad December 8, 2013

Postby tlanglet » Sun Dec 08, 2013 4:30 pm

I have been gone for a while and now notice a lot of "action" during that time. I expect it will take me a while to catch up on all that activity, but I do have a solution for the puzzle today. It is an interesting AUR(19)r79c27 with extra internal digits in all four cells and a x-wing(1) overlay.


Code: Select all
 *--------------------------------------------------*
 | 25   3    569  | 8    1    7    | 4    26   59   |
 | 258  78   56   | 9    3    4    | 57   26   1    |
 | 1    79   4    | 2    5    6    | 379  38   89   |
 |----------------+----------------+----------------|
 | 9    2    7    | 4    6    1    | 8    5    3    |
 | 6    5    1    | 3    7    8    | 2    9    4    |
 | 3    4    8    | 5    9    2    | 6    1    7    |
 |----------------+----------------+----------------|
 | 4   *189  39   | 7    2    5    |*139  38   6    |
 | 7    6    35   | 1    8    9    | 35   4    2    |
 | 58  *189  2    | 6    4    3    |*159  7    589  |
 *--------------------------------------------------*

The external SIS is simply 9r7c3 & 9r9c9, thus
AUR(19)r79c27[9r9c9=(9-3)r7c3]=3r8c3-(3=5)r8c7 => r9c9<>5 to complete the puzzle.

Also, the four internal SIS, 8r79c2,3r7c7,5r9c7, provide the identical solution.
8r79c2-(8=5)r9c1 => r9c9<>5
||
3r7c7-(3=5)r8c7 => r9c9<>5
||
5r9c7 => r9c9<>5

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Next

Return to Puzzles