Dan's Ditto Daddy January 6, 2014

Post puzzles for others to solve here.

Dan's Ditto Daddy January 6, 2014

Postby ArkieTech » Mon Jan 06, 2014 12:31 am

Code: Select all
 *-----------*
 |.4.|7..|..2|
 |1..|8..|...|
 |..9|.6.|3..|
 |---+---+---|
 |.2.|...|5..|
 |6.8|.5.|4.1|
 |..4|...|.9.|
 |---+---+---|
 |..3|.4.|8..|
 |...|..2|..7|
 |7..|..6|.5.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Ditto Daddy January 6, 2014

Postby Leren » Mon Jan 06, 2014 12:43 am

Code: Select all
*---------------------------------------------------------------*
| 358   4     56     | 7      139   1359   | 169   168   2      |
| 1     3567 e567-2  | 8     a239   3459   | 679   467   569    |
| 258   57    9      | 124    6     145    | 3     1478  58     |
|--------------------+---------------------+--------------------|
| 39    2    d17     | 13469 c1379  13489  | 5     678   368    |
| 6     379   8      | 239    5     39     | 4     27    1      |
| 35    1357  4      | 1236  b1237  138    | 267   9     368    |
|--------------------+---------------------+--------------------|
| 259   1569  3      | 159    4     7      | 8     126   69     |
| 4     15689 156    | 159    189   2      | 169   3     7      |
| 7     189   12     | 139    1389  6      | 129   5     4      |
*---------------------------------------------------------------*

L2 Wing: (2) r2c5 = (2-7) r6c5 = r4c5 - r4c3 = (7) r2c3 => - 2 r2c3; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Dan's Ditto Daddy January 6, 2014

Postby pjb » Mon Jan 06, 2014 2:36 am

Code: Select all
 358    4      56     | 7      139    1359   | 169    168    2     
 1      3567   2567   | 8      239    3459   | 679    467    569   
 258    57     9      | 124    6      145    | 3      1478   58     
 ---------------------+----------------------+---------------------
 39     2     a17     | 13469  1379   13489  | 5      68-7   368   
 6      39-7   8      | 239    5      39     | 4     e27     1     
 35     1357   4      | 1236   1237   138    | 267    9      368   
 ---------------------+----------------------+---------------------
c259    1569   3      | 159    4      7      | 8     d126    69     
 4      15689  156    | 159    189    2      | 169    3      7     
 7      189   b12     | 139    1389   6      | 129    5      4     

(7=1) r4c3 - (1=2) r9c3 - r7c1 = r7c8 - (2=7) r5c8 => -7 r4c8, r5c2; stte

Phil
(Silly typo fixed)
Last edited by pjb on Tue Jan 07, 2014 1:08 am, edited 1 time in total.
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Dan's Ditto Daddy January 6, 2014

Postby SteveG48 » Mon Jan 06, 2014 3:25 am

Code: Select all
 *--------------------------------------------------------------------*
 | 358    4      56     | 7      139    1359   | 169    168    2      |
 | 1      3567  d2567   | 8     e239    3459   | 679    467    569    |
 |c258    57     9      |f124    6      145    | 3      1478   58     |
 *----------------------+----------------------+----------------------|
 | 39     2     j17     | 13469 i1379   13489  | 5      678    368    |
 | 6      379    8      |g239    5      39     | 4      27     1      |
 | 35     1357   4      |g1236  h1237   138    | 267    9      368    |
 *----------------------+----------------------+----------------------|
 |b259    1569   3      | 159    4      7      | 8      126    69     |
 | 4      15689  156    | 159    189    2      | 169    3      7      |
 | 7      189   a2-1    | 139    1389   6      | 129    5      4      |
 *--------------------------------------------------------------------*


(1-2)r9c3 = r7c1 - r3c1= r2c3 - r2c5 = r3c4 - r56c4 = (2-7)r6c5 = r4c5 - (7=1)r4c3 => -1 r9c3 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Ditto Daddy January 6, 2014

Postby tlanglet » Mon Jan 06, 2014 1:22 pm

After basics, I started looking for Sue de Coq patterns and found this
Almost Sue de Cue (13459)r123c6 with (39)r5c6 & (14=2)r3c4.

Code: Select all
 *--------------------------------------------------------------------*
 | 358    4      56     | 7      139   *1359   | 169    168    2      |
 | 1      3567  b2567   | 8     a239   *3459   | 679    467    569    |
 | 258    57     9      |*14=2   6     *145    | 3      1478   58     |
 |----------------------+----------------------+----------------------|
 | 39     2     c17     | 13469  1379   13489  | 5      678    368    |
 | 6     d379    8      |d239    5    *d39     | 4      27     1      |
 | 35     1357   4      | 1236   1237   138    | 267    9      368    |
 |----------------------+----------------------+----------------------|
 | 259    1569   3      | 159    4      7      | 8      126    69     |
 | 4      15689  156    | 159    189    2      | 169    3      7      |
 | 7      189    12     | 139    1389   6      | 129    5      4      |
 *--------------------------------------------------------------------*

The Sue de Coq makes the following deletions: Sue de Cue (13459)r123c6 => r46c6<>3, r4c6<>9, r1c5<>1

Pursuing the extra term: 2r2c4-r3c1=(2-7)r2c3=7r4c3-(7=392)r5c264 Contradiction => r3c4<>2

Thus, the SdC is true but does not solve the puzzle. However the deletion of 2 in r3c4 does complete the puzzle. It is sad when a beautiful pattern fails to complete a puzzle but a side aspect of the pattern does the deed. :(

Ted

[Edited to correct typo in SdC deletions.]
Last edited by tlanglet on Mon Jan 06, 2014 6:46 pm, edited 1 time in total.
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Ditto Daddy January 6, 2014

Postby Marty R. » Mon Jan 06, 2014 5:51 pm

pjb wrote:
Code: Select all
 358    4      56     | 7      139    1359   | 169    168    2     
 1      3567   2567   | 8      239    3459   | 679    467    569   
 258    57     9      | 124    6      145    | 3      1478   58     
 ---------------------+----------------------+---------------------
 39     2     a17     | 13469  1379   13489  | 5      68-7   368   
 6      379    8      | 239    5      39     | 4     e27     1     
 35     135-7  4      | 1236   1237   138    | 267    9      368   
 ---------------------+----------------------+---------------------
c259    1569   3      | 159    4      7      | 8     d126    69     
 4      15689  156    | 159    189    2      | 169    3      7     
 7      189   b12     | 139    1389   6      | 129    5      4     

(7=1) r4c3 - (1=2) r9c3 - r7c1 = r7c8 - (2=7) r5c8 => -7 r4c8, r5c2; stte

Phil


Same as Phil except Phil seems to have a typo, showing the 7 being eliminated from r6c2 rather than r5c2.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Dan's Ditto Daddy January 6, 2014

Postby Luke » Mon Jan 06, 2014 5:59 pm

Much same as others, but inspired by Ted's doubly-linked als:

Code: Select all
*--------------------------------------------------------------------*
 | 358    4      56     | 7      139    1359   | 169    168    2      |
 | 1      3567  *2567   | 8     *239    3459   | 679    467    569    |
 | 258    57     9      | 14-2   6      145    | 3      1478   58     |
 |----------------------+----------------------+----------------------|
 | 39     2     *17     | 13469  1379   13489  | 5      678    368    |
 | 6     *379    8      |*239    5      39     | 4     *27     1      |
 | 35     1357   4      | 1236   1237   138    | 267    9      368    |
 |----------------------+----------------------+----------------------|
 | 259    1569   3      | 159    4      7      | 8      126    69     |
 | 4      15689  156    | 159    189    2      | 169    3      7      |
 | 7      189    12     | 139    1389   6      | 129    5      4      |
 *--------------------------------------------------------------------*

(2)r5c4=(2-7)r5c8=r5c2-r4c3=(7-2)r2c3=(2)r2c5 ==>r3c4<>2

Ted: I don't think (1)r1c6 is part of the SdQ elims, unless there's a cannibal in the house...

Edit: K, it's just a typo, ne'er mind.
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Re: Dan's Ditto Daddy January 6, 2014

Postby Ngisa » Mon Jan 06, 2014 9:51 pm

Code: Select all
+----------------+------------------+--------------+
| 358 4     56   | 7     139  1359  | 169 168  2   |
| 1   3567  2567 | 8     239  3459  | 679 467  569 |
| 258 57    9    | 124   6    145   | 3   1478 58  |
+----------------+------------------+--------------+
| 39  2     7-1   | 13469 1379 13489 | 5   678  368 |
| 6   7-39   8    | 239   5    39    | 4   27   1   |
| 35  1357  4    | 1236  1237 138   | 267 9    368 |
+----------------+------------------+--------------+
| 259 1569  3    | 159   4    7     | 8   126  69  |
| 4   15689 156  | 159   189  2     | 169 3    7   |
| 7   189   12   | 139   1389 6     | 129 5    4   |
+----------------+------------------+--------------+
2r5c8 => 7r5c2
2r5c8-r7c8=2r9c7-(2=1)r9c3 =>7r4c3; two 7's in Box 4; r5c8<>2; stte :)
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: Dan's Ditto Daddy January 6, 2014

Postby SteveG48 » Mon Jan 06, 2014 10:41 pm

Ngisa wrote:
Code: Select all
+----------------+------------------+--------------+
| 358 4     56   | 7     139  1359  | 169 168  2   |
| 1   3567  2567 | 8     239  3459  | 679 467  569 |
| 258 57    9    | 124   6    145   | 3   1478 58  |
+----------------+------------------+--------------+
| 39  2     7-1   | 13469 1379 13489 | 5   678  368 |
| 6   7-39   8    | 239   5    39    | 4   27   1   |
| 35  1357  4    | 1236  1237 138   | 267 9    368 |
+----------------+------------------+--------------+
| 259 1569  3    | 159   4    7     | 8   126  69  |
| 4   15689 156  | 159   189  2     | 169 3    7   |
| 7   189   12   | 139   1389 6     | 129 5    4   |
+----------------+------------------+--------------+
2r5c8 => 7r5c2
2r5c8-r7c8=2r9c7-(2=1)r9c3 =>7r4c3; two 7's in Box 4; r5c8<>2; stte :)


Good one, Ngisa. If you want to write exactly the same thing as a loop, try:

(2)r5c8 -r7c8 =r9c7 - (2=1)r9c3 - (1=7)r4c3 - r5c2 = (7-2)r5c8 => -2 r5c8
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Ditto Daddy January 6, 2014

Postby ronk » Tue Jan 07, 2014 12:48 am

tlanglet wrote:The Sue de Coq makes the following deletions: Sue de Cue (13459)r123c6 => r46c6<>3, r4c6<>9, r1c5<>1

Pursuing the extra term: 2r2c4-r3c1=(2-7)r2c3=7r4c3-(7=392)r5c264 Contradiction => r3c4<>2

Thus, the SdC is true but does not solve the puzzle. However the deletion of 2 in r3c4 does complete the puzzle. It is sad when a beautiful pattern fails to complete a puzzle but a side aspect of the pattern does the deed. :(


So your chain ... (2)r3c1=(2-7)r2c3=(7)r4c3-(7=392)r5c264 => r3c4<>2 ... is sufficient for ste, right?

Moreover, if there truly were an almost SDC, both the SDC without the extra candidate(s), and the extra candidate(s), should separately lead to the same exclusion(s).
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Dan's Ditto Daddy January 6, 2014

Postby tlanglet » Wed Jan 08, 2014 3:20 am

ronk wrote:
tlanglet wrote:The Sue de Coq makes the following deletions: Sue de Cue (13459)r123c6 => r46c6<>3, r4c6<>9, r1c5<>1

Pursuing the extra term: 2r2c4-r3c1=(2-7)r2c3=7r4c3-(7=392)r5c264 Contradiction => r3c4<>2

Thus, the SdC is true but does not solve the puzzle. However the deletion of 2 in r3c4 does complete the puzzle. It is sad when a beautiful pattern fails to complete a puzzle but a side aspect of the pattern does the deed. :(


So your chain ... (2)r3c1=(2-7)r2c3=(7)r4c3-(7=392)r5c264 => r3c4<>2 ... is sufficient for ste, right?

Moreover, if there truly were an almost SDC, both the SDC without the extra candidate(s), and the extra candidate(s), should separately lead to the same exclusion(s).


Ron,

So your chain ... (2)r3c1=(2-7)r2c3=(7)r4c3-(7=392)r5c264 => r3c4<>2 ... is sufficient for ste, right?

Yes, the chain => r3c4<>2 results in ste.

Moreover, if there truly were an almost SDC, both the SDC without the extra candidate(s), and the extra candidate(s), should separately lead to the same exclusion(s).

I am not sure exactly what you intended by your post. I understand that the only deletions possible from an almost solution with a valid extra candidate(s) is that common set of deletions provided by both the extra candidate(s) and the solution without the extra candidate. When the extra candidate is invalid, as is the situation this puzzle, I have simply deleted the invalid extra candidate plus made the deletions of the basic solution which might be considered as a two step process.

Are you addressing a consideration that I have totally overlooked?

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Ditto Daddy January 6, 2014

Postby Ngisa » Wed Jan 08, 2014 6:50 am

Steve, I have followed the loop as you have shown. It elaborates it better and clear. Next time I will try to do that. Thanks.
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: Dan's Ditto Daddy January 6, 2014

Postby ronk » Thu Jan 09, 2014 1:15 am

tlanglet wrote:I am not sure exactly what you intended by your post. I understand that the only deletions possible from an almost solution with a valid extra candidate(s) is that common set of deletions provided by both the extra candidate(s) and the solution without the extra candidate. When the extra candidate is invalid, as is the situation this puzzle, I have simply deleted the invalid extra candidate plus made the deletions of the basic solution which might be considered as a two step process.

Are you addressing a consideration that I have totally overlooked?

Probably not. Minor point I suppose, but I'm only saying that you found an SDC while looking for an almost SDC. Your post makes it sound like you actually found an almost SDC.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA


Return to Puzzles