Dan's Delivery November 18, 2013

Post puzzles for others to solve here.

Dan's Delivery November 18, 2013

Postby ArkieTech » Mon Nov 18, 2013 12:46 am

Code: Select all
 *-----------*
 |...|..6|37.|
 |..5|...|..8|
 |...|93.|..5|
 |---+---+---|
 |..9|8..|.4.|
 |.8.|.2.|.1.|
 |.1.|..9|5..|
 |---+---+---|
 |7..|.53|...|
 |2..|...|6..|
 |.91|7..|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Delivery November 18, 2013

Postby Leren » Mon Nov 18, 2013 1:09 am

Code: Select all
*--------------------------------------------------------------*
| 19    24    24     | 5     8     6      | 3     7     19     |
| 19    3     5      | 124   147   1247   | 149   6     8      |
| 8     67    67     | 9     3     14     | 14    2     5      |
|--------------------+--------------------+--------------------|
| 36    257   9      | 8     1-7   15-7   |a27    4     36     |
| 45    8     37     | 36    2     45     | 79    1     369    |
|b346   1     237    |b36   b47    9      | 5     8    b236    |
|--------------------+--------------------+--------------------|
| 7     46    468    | 24    5     3      | 128   9     124    |
| 2     45    348    | 14    9     148    | 6     35    7      |
| 35    9     1      | 7     6     248    | 28    35    24     |
*--------------------------------------------------------------*

ALS XZ Rule X = 2, Z = 7: (7=2) r4c7 - (2=7) r6c1457 => - 7 r4c56; stte

We aim for prompt Delivery of solutions !

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: Dan's Delivery November 18, 2013

Postby tlanglet » Mon Nov 18, 2013 2:51 am

Code: Select all
 *-----------------------------------------------------------*
 | 19    24    24    | 5     8     6     | 3     7     19    |
 | 19    3     5     | 124   147   1247  | 149   6     8     |
 | 8     67    67    | 9     3     14    | 14    2     5     |
 |-------------------+-------------------+-------------------|
 | 36   e257   9     | 8     17    157   | 27    4     36    |
 |a45    8     37    | 36    2     45    | 79    1     369   |
 |b346   1    d237   | 36    47    9     | 5     8    c236   |
 |-------------------+-------------------+-------------------|
 | 7     46    468   | 24    5     3     | 128   9     124   |
 | 2     45    348   | 14    9     148   | 6     35    7     |
 | 35    9     1     | 7     6     248   | 28    35    24    |
 *-----------------------------------------------------------*

(5=4)r5c1-AUR(36)r46c19[4r6c1=2r6c9]-r6c3=2r4c2 => r4c2<>5

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Delivery November 18, 2013

Postby pjb » Mon Nov 18, 2013 3:14 am

Code: Select all
 19     24     24     | 5      8      6      | 3      7      19     
 19     3      5      | 124    147    1247   | 149    6      8     
 8      67     67     | 9      3      14     | 14     2      5     
---------------------+----------------------+---------------------
 36    c257    9      | 8      17    b157    |d27     4      36     
 5-4    8      37     | 36     2     a45     | 79     1      369   
 e346   1      237    | 36     7-4    9      | 5      8      236   
 ---------------------+----------------------+---------------------
 7      46     468    | 24     5      3      | 128    9      124   
 2      45     348    | 14     9      148    | 6      35     7     
 35     9      1      | 7      6      248    | 28     35     24     

Using same DP:
(4=5) r5c6 - r4c6 = (5-2) r4c2 = r4c7 - AUR(36)r46c19[2r6c9=4r6c1] => -4 r5c1, r6c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: Dan's Delivery November 18, 2013

Postby ArkieTech » Mon Nov 18, 2013 11:54 am

Code: Select all
 *-----------------------------------------------------------*
 | 19    24    24    | 5     8     6     | 3     7     19    |
 | 19    3     5     | 124   147   1247  | 149   6     8     |
 | 8     67    67    | 9     3     14    | 14    2     5     |
 |-------------------+-------------------+-------------------|
 | 36   b257   9     | 8     1-7   15-7  |a27    4     36    |
 | 45    8     37    | 36    2     45    | 79    1     369   |
 | 346   1    c237   | 36   d47    9     | 5     8     236   |
 |-------------------+-------------------+-------------------|
 | 7     46    468   | 24    5     3     | 128   9     124   |
 | 2     45    348   | 14    9     148   | 6     35    7     |
 | 35    9     1     | 7     6     248   | 28    35    24    |
 *-----------------------------------------------------------*
 m-wing
(7=2)r4c7-r4c2=(2-7)r6c3=7r6c5 => -7r4c56; ste
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Delivery November 18, 2013

Postby Marty R. » Mon Nov 18, 2013 5:52 pm

Code: Select all
+-------------+--------------+------------+
| 19  24  24  | 5   8   6    | 3   7  19  |
| 19  3   5   | 124 147 1247 | 149 6  8   |
| 8   67  67  | 9   3   14   | 14  2  5   |
+-------------+--------------+------------+
| 36  257 9   | 8   17  157  | 27  4  36  |
| 45  8   37  | 36  2   45   | 79  1  369 |
| 346 1   237 | 36  47  9    | 5   8  236 |
+-------------+--------------+------------+
| 7   46  468 | 24  5   3    | 128 9  124 |
| 2   45  348 | 14  9   148  | 6   35 7   |
| 35  9   1   | 7   6   248  | 28  35 24  |
+-------------+--------------+------------+

Play this puzzle online at the Daily Sudoku site

(3=7)r5c3-(7236=4)r6c3491-(4=5)r5c1-(5=3)r9c1=>r46c1<>3
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Dan's Delivery November 18, 2013

Postby tlanglet » Mon Nov 18, 2013 9:08 pm

Marty,

Given that you add the basis for your initial premise that "4r6c1=2r6c9", then your statement is as good as the ones Phil and I posted. Thus,
AUR(36)r46c19[4r6c1=2r6c9]-(2=7)r4c7-(715=4)r4c65,r5c6=>r5c1,r6c5<>4
When it is embedded in an AIC, the AUR is simply used as another strong link.

Hopefully someone else can offer a more informative response to you.

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Delivery November 18, 2013

Postby Marty R. » Tue Nov 19, 2013 12:53 am

tlanglet wrote:Marty,

Given that you add the basis for your initial premise that "4r6c1=2r6c9", then your statement is as good as the ones Phil and I posted. Thus,
AUR(36)r46c19[4r6c1=2r6c9]-(2=7)r4c7-(715=4)r4c65,r5c6=>r5c1,r6c5<>4
When it is embedded in an AIC, the AUR is simply used as another strong link.

Hopefully someone else can offer a more informative response to you.

Ted


Ted,

You got there pretty fast after my post because I deleted it within minutes of posting it.

This is just row 6.
Code: Select all
346 1   237 | 36  47  9    | 5   8  236


After posting I decided that my premise of 4r6c1=2r6c9 was not valid. That premise assumes that one or the other value must be present to prevent the DP. Somebody (possibly Danny) a while back pointed out that a 36 DP is not possible because of the 36 cell in c4, so since then I have avoided uniqueness logic every time the deadly pair exists in the same house as the UR cells.

I'd appreciate your and others' comments.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Dan's Delivery November 18, 2013

Postby tlanglet » Tue Nov 19, 2013 1:33 am

Marty R. wrote:Ted

This is just row 6.
Code: Select all
346 1   237 | 36  47  9    | 5   8  236


After posting I decided that my premise of 4r6c1=2r6c9 was not valid. That premise assumes that one or the other value must be present to prevent the DP. Somebody (possibly Danny) a while back pointed out that a 36 DP is not possible because of the 36 cell in c4, so since then I have avoided uniqueness logic every time the deadly pair exists in the same house as the UR cells.

I'd appreciate your and others' comments.


Marty,


AURs are resolved by internal inferences, external inferences or mixed internal/external inference. So, in my simple-minded view, (36)r6c4 will absolutely prevent the UR, but that does not alter the fact that the internal inferences are still valid since the AUR(36) pattern is valid. I view the internal/external inferences as complimentary in that they influence each other but do not invalidate the other.

If r6c4=3 then r6c1=46 and r6c9=r26 which results in the strong link 4r6c1=2r6c9. The same result is obtained assuming r6c4=6. Finally, another possible way to view this is the ALS(2346)r6c149 which directly forms the strong link 4r6c1=2r6c9 without using the AUR.

So where are the gurus to let the truth been known?

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Delivery November 18, 2013

Postby Luke » Tue Nov 19, 2013 3:39 am

While we await the verdict of the gurus, I'll just say I see nothing but DPs in Band 2. Each is exploitable on my planet.

BUG-Lite, (4)r6c1 or (3)r9c1=(9)r5c9
Code: Select all
 *-----------------------------------------------------------*
 | 19    24    24    | 5     8     6     | 3     7     19    |
 | 19    3     5     | 124   147   1247  | 149   6     8     |
 | 8     67    67    | 9     3     14    | 14    2     5     |
 |-------------------+-------------------+-------------------|
 |*36    257   9     | 8     17    157   | 27    4    *36    |
 | 45    8     37    |*36    2     45    | 79    1    *36+9  |
 |*36+4  1     237   |*36    47    9     | 5     8     236   |
 |-------------------+-------------------+-------------------|
 | 7     46    468   | 24    5     3     | 128   9     124   |
 | 2     45    348   | 14    9     148   | 6     35    7     |
 |+35    9     1     | 7     6     248   | 28    35    24    |
 *-----------------------------------------------------------*


AUR #1, (9)r5c9 or (3)r5c3=(2)r6c9
Code: Select all
 *-----------------------------------------------------------*
 | 19    24    24    | 5     8     6     | 3     7     19    |
 | 19    3     5     | 124   147   1247  | 149   6     8     |
 | 8     67    67    | 9     3     14    | 14    2     5     |
 |-------------------+-------------------+-------------------|
 | 36    257   9     | 8     17    157   | 27    4     36    |
 | 45    8    +37    |*36    2     45    | 79    1    *36+9  |
 | 346   1     237   |*36    47    9     | 5     8    *36+2  |
 |-------------------+-------------------+-------------------|
 | 7     46    468   | 24    5     3     | 128   9     124   |
 | 2     45    348   | 14    9     148   | 6     35    7     |
 | 35    9     1     | 7     6     248   | 28    35    24    |
 *-----------------------------------------------------------*


AUR #2, (4)r6c1=(2)r6c9
Code: Select all
 *-----------------------------------------------------------*
 | 19    24    24    | 5     8     6     | 3     7     19    |
 | 19    3     5     | 124   147   1247  | 149   6     8     |
 | 8     67    67    | 9     3     14    | 14    2     5     |
 |-------------------+-------------------+-------------------|
 |*36    257   9     | 8     17    157   | 27    4    *36    |
 | 45    8     37    | 36    2     45    | 79    1     369   |
 |*36+4   1    237   | 36    47    9     | 5     8    *36+2  |
 |-------------------+-------------------+-------------------|
 | 7     46    468   | 24    5     3     | 128   9     124   |
 | 2     45    348   | 14    9     148   | 6     35    7     |
 | 35    9     1     | 7     6     248   | 28    35    24    |
 *-----------------------------------------------------------*


I'd even combine them into a MUG if I could, or pick and choose the SIS if it was amusing:

Discontinuous Nice Loop (strong):
(4)r6c1=(9)r5c9-(9=72)als:r45c7-(2)r6c9=(4)r6c1
==>r6c1=4

But....that's just me. Been wrong b4, will be wrong again! :twisted:
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Re: Dan's Delivery November 18, 2013

Postby daj95376 » Tue Nov 19, 2013 5:29 am

Piggybacking on Luke's hard effort: Combining BUG-Lite and AUR #2

Code: Select all
(4)r6c1 = (92-36)r56c9 = (36)r4c9; contradiction  =>  r6c1=4
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Dan's Delivery November 18, 2013

Postby ronk » Tue Nov 19, 2013 6:18 pm

Marty R. wrote:This is just row 6.
Code: Select all
346 1   237 | 36  47  9    | 5   8  236


After posting I decided that my premise of 4r6c1=2r6c9 was not valid. That premise assumes that one or the other value must be present to prevent the DP. Somebody (possibly Danny) a while back pointed out that a 36 DP is not possible because of the 36 cell in c4, so since then I have avoided uniqueness logic every time the deadly pair exists in the same house as the UR cells.

I'd appreciate your and others' comments.

If it were possible to reduce a deadly uniqueness pattern to all singles, the proper term would be Unavoidable Set (UAS).

Code: Select all
 .  12 .  |  .  .  .  |  .  12 .      .  1  .  |  .  .  .  |  .  2  . 
 .  12 .  |  .  12 .  |  .  .  .      .  2  .  |  .  1  .  |  .  .  . 
 .  .  .  |  .  12 .  |  .  12 .      .  .  .  |  .  2  .  |  .  1  . 
----------+-----------+-----------   ----------+-----------+-----------
 .  .  .  |  .  .  .  |  .  .  .      .  .  .  |  .  .  .  |  .  .  . 
 Deadly Pattern (DP)                  UnAvoidable Set (UAS or simply UA)

Use of any set of valid techniques by a Sudoku solver will not uncover a UAS. The author of a proper Sudoku puzzle must place a least one clue in each UAS of the solution grid.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA


Return to Puzzles