Dan's Delection November 20, 2013

Post puzzles for others to solve here.

Dan's Delection November 20, 2013

Postby ArkieTech » Wed Nov 20, 2013 12:13 am

Code: Select all
 *-----------*
 |...|9..|53.|
 |1..|..8|...|
 |.3.|...|..2|
 |---+---+---|
 |...|.6.|1..|
 |.84|...|67.|
 |..7|.8.|...|
 |---+---+---|
 |2..|...|.1.|
 |...|3..|..7|
 |.65|..4|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Delection November 20, 2013

Postby Leren » Wed Nov 20, 2013 12:30 am

Code: Select all
*-----------------------------------------------------------------------*
| 478    247    268     | 9      247    267     | 5      3      1       |
| 1      24579  269     | 2567   3      8       | 79     469    469     |
| 4579   3      69      | 1567   1457   1567    | 789    4689   2       |
|-----------------------+-----------------------+-----------------------|
| 359    259    239     | 457    6      3579    | 1      4589   34589   |
| 359    8      4       | 125    1259   12359   | 6      7      359     |
| 6      1      7       | 45     8      359     | 239    2459   3459    |
|-----------------------+-----------------------+-----------------------|
| 2     c479   a389     | 5678   579    5679    |b3489   1      56      |
| 489    49     1       | 3      259    2569    | 2489   56     7       |
|d789-3  6      5       | 1278   1279   4       | 2389   289    389     |
*-----------------------------------------------------------------------*

L3 Wing; (3) r7c3 = (3-4) r7c7 = (4-7) r7c2 = (7) r9c1 => - 3 r9c1; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Dan's Delection November 20, 2013

Postby pjb » Wed Nov 20, 2013 1:43 am

Code: Select all
 47-8   247   a268    | 9      247    267    | 5      3      1     
 1      24579  269    | 2567   3      8      | 79     469    469   
 4579   3      69     | 1567   1457   1567   | 789    4689   2     
 ---------------------+----------------------+---------------------
 359    259    239    | 457    6      3579   | 1      4589   34589 
 359    8      4      | 125    1259   12359  | 6      7      359   
 6      1      7      | 45     8      359    | 239    2459   3459   
 ---------------------+----------------------+---------------------
 2      479   b39-8   | 5678   579    5679   |c3489   1      56     
e489    49     1      | 3      259    2569   |d2489   56     7     
 3789   6      5      | 1278   1279   4      | 2389   289    389   

(8) r1c3 = (8-3) r7c3 = (3-4) r7c7 = (4-8) r8c7 = r8c1 => -8 r1c1, r7c3; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Dan's Delection November 20, 2013

Postby ArkieTech » Wed Nov 20, 2013 7:55 am

Code: Select all
 *--------------------------------------------------------------------*
 | 478    247    268    | 9      247    267    | 5      3      1      |
 | 1      24579  269    | 2567   3      8      | 79     469    469    |
 | 4579   3      69     | 1567   1457   1567   | 789    4689   2      |
 |----------------------+----------------------+----------------------|
 | 359    259    239    | 457    6      3579   | 1      4589   34589  |
 | 359    8      4      | 125    1259   12359  | 6      7      359    |
 | 6      1      7      | 45     8      359    | 239    2459   3459   |
 |----------------------+----------------------+----------------------|
 | 2     c479   a89+3   | 5678   579    5679   |d3489   1      56     |
 | 489    49     1      | 3      259    2569   | 2489   56     7      |
 |b3789   6      5      | 1278   1279   4      | 2389   289    389    |
 *--------------------------------------------------------------------*
3r7c3=(3-7)r9c1=(7-4)r7c2=(4-3)r7c7=3r7c3 => 3r7c3; ste
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Delection November 20, 2013

Postby tlanglet » Wed Nov 20, 2013 3:24 pm

Yesterday Luke posted a solution that he referred to as "messy". Today is my turn to have a messy solution, but I am hoping someone will be able to suggest a "cleaner" alternate.

Code: Select all
 *--------------------------------------------------------------------*
 | 478    247    268    | 9      247    267    | 5      3      1      |
 | 1      24579  269    | 2567   3      8      | 79     469    469    |
 | 4579   3      69     | 1567   1457   1567   | 789    4689   2      |
 |----------------------+----------------------+----------------------|
 | 359    259    239    | 457    6      3579   | 1      4589   34589  |
 | 359    8      4      | 125    1259   12359  | 6      7      359    |
 | 6      1      7      | 45     8      359    | 239    2459   3459   |
 |----------------------+----------------------+----------------------|
 | 2      479    389    | 5678   579    5679   | 3489   1      56     |
 | 489    49     1      | 3      259    2569   | 2489   56     7      |
 | 3789   6      5      | 1278   1279   4      | 2389   289    389    |
 *--------------------------------------------------------------------*

ANP(49=7)r78c2
1: (7*-4)r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4-(6=5)r7c9 => r7c5<>7*5=9
2: (7*-4)r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4-(6=5)r7c9 => r7c6<>7*65=9

The same logic path forces two cell to have an identical value: 9r7c5 & 7r7c6. Thus, r7c<>7 to solve the puzzle.

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Delection November 20, 2013

Postby daj95376 » Wed Nov 20, 2013 4:58 pm

tlanglet wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 478    247    268    | 9      247    267    | 5      3      1      |
 | 1      24579  269    | 2567   3      8      | 79     469    469    |
 | 4579   3      69     | 1567   1457   1567   | 789    4689   2      |
 |----------------------+----------------------+----------------------|
 | 359    259    239    | 457    6      3579   | 1      4589   34589  |
 | 359    8      4      | 125    1259   12359  | 6      7      359    |
 | 6      1      7      | 45     8      359    | 239    2459   3459   |
 |----------------------+----------------------+----------------------|
 | 2      479    389    | 5678   579    5679   | 3489   1      56     |
 | 489    49     1      | 3      259    2569   | 2489   56     7      |
 | 3789   6      5      | 1278   1279   4      | 2389   289    389    |
 *--------------------------------------------------------------------*

ANP(49=7)r78c2
1: (7*-4)r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4-(6=5)r7c9 => r7c5<>7*5=9
2: (7*-4)r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4-(6=5)r7c9 => r7c6<>7*65=9

The same logic path forces two cell to have an identical value: 9r7c5 & 7r7c6. Thus, r7c???<>7 to solve the puzzle.

From what I can tell, your ANP never fits into your logic, which is a contradiction in a network. It can be converted to:

Code: Select all
4r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4 - ANT(6=579)r7c569  =>  -7r7c2
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Dan's Delection November 20, 2013

Postby tlanglet » Wed Nov 20, 2013 5:37 pm

daj95376 wrote:
tlanglet wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 478    247    268    | 9      247    267    | 5      3      1      |
 | 1      24579  269    | 2567   3      8      | 79     469    469    |
 | 4579   3      69     | 1567   1457   1567   | 789    4689   2      |
 |----------------------+----------------------+----------------------|
 | 359    259    239    | 457    6      3579   | 1      4589   34589  |
 | 359    8      4      | 125    1259   12359  | 6      7      359    |
 | 6      1      7      | 45     8      359    | 239    2459   3459   |
 |----------------------+----------------------+----------------------|
 | 2      479    389    | 5678   579    5679   | 3489   1      56     |
 | 489    49     1      | 3      259    2569   | 2489   56     7      |
 | 3789   6      5      | 1278   1279   4      | 2389   289    389    |
 *--------------------------------------------------------------------*

ANP(49=7)r78c2
1: (7*-4)r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4-(6=5)r7c9 => r7c5<>7*5=9
2: (7*-4)r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4-(6=5)r7c9 => r7c6<>7*65=9

The same logic path forces two cell to have an identical value: 9r7c5 & 7r7c6. Thus, r7c???<>7 to solve the puzzle.

From what I can tell, your ANP never fits into your logic, which is a contradiction in a network. It can be converted to:

Code: Select all
4r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4 - ANT(6=579)r7c569  =>  -7r7c2

Danny,

Thanks for the comments. I agree that my logic did not involve the ANP(), but I provided that info simply to show the basis for determining the results of making r7c2=7.

You approach using the ANT() is very good and I am sorry that I missed that clean solution. I was focused on finding a "reasonable" logic flow showing that r7c2=2 results in a conflict, Maybe none exists and your approach is the only sensible solution.

Ted :)
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Delection November 20, 2013

Postby JC Van Hay » Wed Nov 20, 2013 5:39 pm

daj95376 wrote:... It can be converted to:
Code: Select all
4r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4 - ANT(6=579)r7c569  =>  -7r7c2
FWIW, due to the overlapping chains, the excluded candidates are 8r7c4 and 79r7c273 ...
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Dan's Delection November 20, 2013

Postby Marty R. » Wed Nov 20, 2013 6:21 pm

pjb wrote:
Code: Select all
 47-8   247   a268    | 9      247    267    | 5      3      1     
 1      24579  269    | 2567   3      8      | 79     469    469   
 4579   3      69     | 1567   1457   1567   | 789    4689   2     
 ---------------------+----------------------+---------------------
 359    259    239    | 457    6      3579   | 1      4589   34589 
 359    8      4      | 125    1259   12359  | 6      7      359   
 6      1      7      | 45     8      359    | 239    2459   3459   
 ---------------------+----------------------+---------------------
 2      479   b39-8   | 5678   579    5679   |c3489   1      56     
e489    49     1      | 3      259    2569   |d2489   56     7     
 3789   6      5      | 1278   1279   4      | 2389   289    389   

(8) r1c3 = (8-3) r7c3 = (3-4) r7c7 = (4-8) r8c7 = r8c1 => -8 r1c1, r7c3; stte

Phil


Identical to Phil's.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Dan's Delection November 20, 2013

Postby daj95376 » Thu Nov 21, 2013 12:21 am

JC Van Hay wrote:
daj95376 wrote:... It can be converted to:
Code: Select all
4r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4 - ANT(6=579)r7c569  =>  -7r7c2
FWIW, due to the overlapping chains, the excluded candidates are 8r7c4 and 79r7c273 ...

I call them embedded chains, and seldom use them. However, I did miss the double elimination in r7c2. :oops:

Code: Select all
                   8 r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4                     =>  -8 r7c4
                   8 r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4 - ANT(6=579)r7c569  =>  - 9r7c3
         3 r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4 - ANT(6=579)r7c569  =>  - 9r7c7
4r7c2=(4-3)r7c7=(3-8)r7c3=(8-6)r1c3=6r1c6-r23c4=6r7c4 - ANT(6=579)r7c569  =>  -79r7c2

BTW, the last chain includes every unsolved cell in [r7]. Maybe we should give Bonus Points for this in the future. :lol:
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006


Return to Puzzles