While going through a set of puzzles, I ran across this one. It can be cracked with two chains that are concurrently present in the grid. However, getting a single-stepper solution required network logic ... and an observation about a shortcoming in Eureka chain notation.
- Code: Select all
+-----------------------+
| 8 . 6 | 1 . . | 7 . 9 |
| . . . | 7 6 . | 3 . 4 |
| 1 . . | 4 . . | . 8 . |
|-------+-------+-------|
| 7 6 8 | . . . | . . . |
| . 1 . | . . . | . 9 . |
| . . . | . . . | 6 4 . |
|-------+-------+-------|
| 4 7 . | . . 1 | . . . |
| . . 9 | . 4 7 | . . 1 |
| 2 8 . | . . . | . 7 . |
+-----------------------+
after basics: two short chains ... or ... a network (of sorts)
+--------------------------------------------------------------+
| 8 4 6 | 1 235 235 | 7 25 9 |
| 59 29 25 | 7 6 8 | 3 1 4 |
| 1 3 7 | 4 259 259 | 25 8 6 |
|--------------------+--------------------+--------------------|
| 7 6 8 | 59 259 4 | 1 235 23 |
| 35 1 4 | 356 7 2356 | 25 9 8 |
| 359 29 25 | 8 1 35 | 6 4 7 |
|--------------------+--------------------+--------------------|
| 4 7 3 | 25 8 1 | 9 6 25 |
| 6 5 9 | 23 4 7 | 8 23 1 |
| 2 8 1 | 3569 359 3569 | 4 7 35 |
+--------------------------------------------------------------+
# 44 eliminations remain
2r1c8 = r3c7 - r5c7 = 2r5c6 => -2 r1c6
(2=59)r4c45 - (5=3)r6c6 - (3=25)r1c68 => -2 r1c5
Note: the two short chains are included, but I'm looking for single-stepper responses. I'd also like to share my results and observation.
_