d.pat.9

Post puzzles for others to solve here.

d.pat.9

Postby eleven » Sun Jan 29, 2017 7:10 pm

Code: Select all
 2 . . . . . . . 3
 . 7 . 5 . . . 8 .
 . . 1 . . . 4 . .
 . . . 6 . . . 7 .
 . . . . 9 . . . .
 . 5 . . . 7 . 2 .
 . . 4 . . . 2 5 .
 . 8 . . . 5 . 6 .
 3 . . . . . . . 1
eleven
 
Posts: 1741
Joined: 10 February 2008

Re: d.pat.9

Postby Leren » Sun Jan 29, 2017 7:35 pm

Code: Select all
*--------------------------------------------------------------*
| 2     46    8      | 479   467   469    | 5     1     3      |
|b49    7     39     | 5     134  a134    | 6     8     2      |
| 5     36    1      | 238   2368  2368   | 4     9     7      |
|--------------------+--------------------+--------------------|
|c89   c13    2      | 6     5     18-3   | 189   7     4      |
| 7    c14    6      | 1248  9     1248   | 18    3     5      |
|c489   5     39     | 1348  1348  7      | 189   2     6      |
|--------------------+--------------------+--------------------|
| 6     9     4      | 137   137  a13     | 2     5     8      |
| 1     8     7      | 24    24    5      | 3     6     9      |
| 3     2     5      | 89    68    689    | 7     4     1      |
*--------------------------------------------------------------*

ALS XY Wing: (3=4) r27c6 - (4=9) r2c1 - (9=3) r4c12, r5c2, r6c1 => - 3 r4c6; stte

Leren
Leren
 
Posts: 3085
Joined: 03 June 2012

Re: d.pat.9

Postby SteveG48 » Sun Jan 29, 2017 8:26 pm

Code: Select all
 *-----------------------------------------------------------*
 | 2     46    8     | 479   467   469   | 5     1     3     |
 |d49    7    d39    | 5     134  c134   | 6     8     2     |
 | 5     6-3   1     | 238   2368  2368  | 4     9     7     |
 *-------------------+-------------------+-------------------|
 | 89   a13    2     | 6     5    b138   | 189   7     4     |
 | 7     14    6     | 1248  9     1248  | 18    3     5     |
 | 489   5     9-3   | 1348  1348  7     | 189   2     6     |
 *-------------------+-------------------+-------------------|
 | 6     9     4     | 137   137  c13    | 2     5     8     |
 | 1     8     7     | 24    24    5     | 3     6     9     |
 | 3     2     5     | 89    68    689   | 7     4     1     |
 *-----------------------------------------------------------*


3r4c2 = r4c6 - (3=14)r27c6 - (4=39)r2c13 => -3 r3c2,r6c3 ; stte
Steve
User avatar
SteveG48
2018 Supporter
 
Posts: 2162
Joined: 08 November 2013
Location: Orlando, Florida

Re: d.pat.9

Postby eleven » Mon Jan 30, 2017 7:08 pm

Seems that StrmCkr was not here ...
There are 2 wxyz-wings with 89,13,39 in box 4 and 138r4c6 or 189r4c7. The first eliminates -1r4c7, the second -8r4c6, which gives the pair 13r46c6, which solves the puzzle.
Since some would see this as a 2-step solution, i included the placement of 4r2c6 in an AIC.
Code: Select all
 *---------------------------------------------*
 | 2    46  8   | 479   467   469   | 5    1 3 |
 | 49   7   39  | 5     134  a4-13  | 6    8 2 |
 | 5    36  1   | 238   2368  2368  | 4    9 7 |
 |--------------+-------------------+----------|
 |d89  c13  2   | 6     5    b138   |c189  7 4 |
 | 7    14  6   | 1248  9     1248  | 18   3 5 |
 | 489  5  d39  | 1348  1348  7     | 189  2 6 |
 |--------------+-------------------+----------|
 | 6    9   4   | 137   137  a13    | 2    5 8 |
 | 1    8   7   | 24    24    5     | 3    6 9 |
 | 3    2   5   | 89    68    689   | 7    4 1 |
 *---------------------------------------------*

(4=13)r27c6-(1|3=89)r4c16-(8|9=13)r4c27-(3=8)b4p19-(8=13)r47c6 => 4r2c6, stte
eleven
 
Posts: 1741
Joined: 10 February 2008

Re: d.pat.9

Postby StrmCkr » Mon Jan 30, 2017 11:22 pm

Code: Select all
.-------------.------------------.-----------.
| 2    46  8  | 479   467   469  | 5    1  3 |
| 49   7   39 | 5     134   134  | 6    8  2 |
| 5    36  1  | 238   2368  2368 | 4    9  7 |
:-------------+------------------+-----------:
| 89   13  2  | 6     5     138  | 189  7  4 |
| 7    14  6  | 1248  9     1248 | 18   3  5 |
| 489  5   39 | 1348  1348  7    | 189  2  6 |
:-------------+------------------+-----------:
| 6    9   4  | 137   137   13   | 2    5  8 |
| 1    8   7  | 24    24    5    | 3    6  9 |
| 3    2   5  | 89    68    689  | 7    4  1 |
'-------------'------------------'-----------'


eleven, 5 cells with 4 digits almost locked set falls into the realm of a:
hybrid-wxyz wing {as suggested }
but lacks any eliminations under my current rule set {as it cannot delete internally}

moreover, disjointed distributed subset results in a singular move that's cannibalistic using the same cells.
{sue de coq as its a 2 sector disjointed subset }

move as seen in xsudo:
Sue [48,91] 12 Candidates,
5 Truths = {4N1267 6N3}
6 Links = {1389r4 39b4}
2 Eliminations --> r4c7<>1, r4c6<>8


p.s
i don't see any elimination for either wxyz-wing directly and cross checked with a few other solvers...

xsudok reports it as a reduced wxyz-wing,
edit : hodoku finds matching als-xz rule for the eliminations as shown in xsudo with allow set over lap...

strmckr

guess this means i found another bug in my program..
Last edited by StrmCkr on Wed Feb 01, 2017 2:29 am, edited 3 times in total.
Some do, some teach, the rest look it up.
User avatar
StrmCkr
 
Posts: 755
Joined: 05 September 2006

Re: d.pat.9

Postby eleven » Tue Jan 31, 2017 8:57 pm

Sorry, if its not called a wxyz-wing, i did not look through the list.
But we have 4 cells/4 digits in both cases.

It is clear that r4c12 cannot be 39 because of 39r6c3.
So either (8r4c1 and 13r4c2) or 1r4c2 (not 1 in the rest of the row).
And either 8r4c1 or (1r4c2 and 89r4c17) (not 8 in the rest of the row).

Don't ask me, why those solvers don't see these als-xz:
(1=9)r4c126-(9=1)r4c2,r6c3 => -1r4c345789
(8=3)r4c127-(3=8)r4c1,r6c3 => -8r4c34689
eleven
 
Posts: 1741
Joined: 10 February 2008

Re: d.pat.9

Postby StrmCkr » Tue Jan 31, 2017 11:18 pm

managed to get hodoku to report both of them by turning on allow set over lap...

    Almost Locked Set XZ-Rule: A=r4c26 {138}, B=r4c12,r6c3 {1389}, X=8, Z=1 => r4c7<>1
    Almost Locked Set XZ-Rule: A=r4c126 {1389}, B=r4c2,r6c3 {139}, X=9, Z=1 => r4c7<>1

    Almost Locked Set XZ-Rule: A=r4c17 {189}, B=r4c12,r6c3 {1389}, X=1, Z=8 => r4c6<>8
    Almost Locked Set XZ-Rule: A=r4c127 {1389}, B=r4c1,r6c3 {389}, X=3, Z=8 => r4c6<>8


the question for me is why didn't my barn and als-xz code not find them...

think it might have something to do with the same reason as hodoku. I don't allow overlapping sets.

edit: the overlapping sets are the reason i cannot find it.
i can only find

set a: R4C127 (1389)
set b: R6C2 (39)
x: 3
z: 9
no eliminations:
Some do, some teach, the rest look it up.
User avatar
StrmCkr
 
Posts: 755
Joined: 05 September 2006


Return to Puzzles

cron