- Code: Select all
*----------------------------------------------------------------------*
| 1 #67 8 | 2679 3 279 | d5679 d257 4 |
| 3 9 467 | 5 12467 1247 | 167 8 267 |
| 5 467 2 | 14679 8 1479 | 3 17 679 |
|----------------------+------------------------+----------------------|
| 267 1237 157 | 8 127 1237 | 4 9 23567 |
| 2679 12347 1479 | 123479 5 123479 | 167 1237 8 |
| 279 8 14579 | 123479 12479 6 | 157 12357 2357 |
|----------------------+------------------------+----------------------|
| 8 #167 3 | 1679 1679 1579 | 2 4 579 |
| #279 5 #179 | 123479 12479 8 | #79 6 a379 |
| 4 #267 679 | 23679 2679 23579 | 8 b357 1 |
*----------------------------------------------------------------------*
I liked the "SK-link" in box 7: (67~12)r79c2-(12~79)r8c13.
Together with 67r1c2 and 79r8c7 this gives "pairs" 67r178c2 and 79r8c139 and immediately some eliminations: -67r345c2, -79r8c459
This is not enough to solve the puzzle.
Now though it is easy to show in AIC, that 79 must be in r8c137 [(79=1)r8c37-(1=2)r179c2-(2=79)r8c17], which directly implies 9r8c7=9r8c13 and 7r8c7=7r8c13 (regardless of 79's elsewhere), i cannot formulate one of these as AIC.
If i could, the chain would be a one-stepper:
9r8c7=9r8c13-r8c79=(9-5)r7c9=r9c8-r1c8=r1c7 => r1c7<>9, stte