daj95376 wrote:This is the only other 17 with 62 unresolved cells (in the PM) that might take more than one advanced step.
- Code: Select all
2.......6.....1.3..5..4.....7...54..3...........6.....6..23....8..9...........1.. #26677
Depends on what qualifies as "advanced":
- Code: Select all
Discontinuous Nice Loop [r1c6]-3-[r3c4]=3=[r3c3]=6=[r3c6]-6-[r9c6]=6=[r9c5]=5=[r1c5]=9=[r1c6] => [r1c6]<>3
Singles, Locked Candidates lead to
.------------------.------------------.------------------.
| 2 38 4 | 37 5 9 | 78 1 6 |
| 7 6 9 | 8 2 1 | 5 3 4 |
| 1 5 38 | 37 4 6 | 2 789 789 |
:------------------+------------------+------------------:
| 9 7 6 | 1 8 5 | 4 2 3 |
| 3 18 18 | 4 79 2 | 6 5 79 |
| 5 4 2 | 6 79 3 | 789 789 1 |
:------------------+------------------+------------------:
| 6 19 157 | 2 3 78 | 789 4 5789 |
| 8 2 57 | 9 1 4 | 3 6 57 |
| 4 39 37 | 5 6 78 | 1 789 2 |
'------------------'------------------'------------------'
W-Wing: 7 in [r1c7],[r7c6] connected through 8 in [r37c9] => [r7c7]<>7
Uniqueness Test 3: 5/7 in [r7c39],[r8c39] => [r7c6]<>8
Naked Single: [r7c6]=7
Full House: [r9c6]=8
W-Wing: 7 in [r5c9],[r9c8] connected through 9 in [r3c89] => [r6c8],[r8c9]<>7
Singles
While testing I found this really impressing nice loop, that eliminates 14 candidates in one step, but needs a second loop:
Continuous Nice Loop [r2c2]=6=[r5c2]-6-[r5c7]=6=[r8c7]=3=[r6c7]-3-[r6c6]=3=[r4c4]=1=[r5c4]=4=[r9c4]=5=[r9c5]=6=[r2c5]-6-[r2c2] => [r8c7]<>2, [r6c9]<>3, [r8c7]<>5, [r25c3],[r5c8]<>6, [r59c4],[r8c7],[r9c5]<>7, [r459c4],[r9c5]<>8