Contrary "17" Puzzles

Everything about Sudoku that doesn't fit in one of the other sections

Postby daj95376 » Sat May 31, 2008 4:27 pm

Hobiwan,

An impressive attack on those stubborn puzzles. My solver resorted to networks because I only have UR Type 1&2 implemented.

I thought I'd post a couple of nicer puzzles before the final two difficult ones.

Code: Select all
....617..8............2.......5...8...38......7....2..42....1.....4....35........ #47289

 +--------------------------------------------------------------+
 |  2     9     5     |  3     6     1     |  7     4     8     |
 |  8     16    7     |  9     45    45    |  36    136   2     |
 |  3     16    4     |  7     2     8     |  5     169   169   |
 |--------------------+--------------------+--------------------|
 |  169   4     2     |  5     379   679   |  369   8     1679  |
 |  169   5     3     |  8     79    2     |  4     1679  1679  |
 |  69    7     8     |  1     349   469   |  2     3569  569   |
 |--------------------+--------------------+--------------------|
 |  4     2     9     |  6     8     3     |  1     57    57    |
 |  7     8     16    |  4     159   59    |  69    2     3     |
 |  5     3     16    |  2     179   79    |  8     69    4     |
 +--------------------------------------------------------------+

Code: Select all
.7....4.82...9........3.6...6.7..5.........92..1......9......1....8.....3........ #47505

 +-----------------------------------------------------------------------+
 |  156    7      9      |  1256   256    256    |  4      3      8      |
 |  2      34     346    |  46     9      8      |  7      5      1      |
 |  145    18     458    |  145    3      7      |  6      2      9      |
 |-----------------------+-----------------------+-----------------------|
 |  8      6      2      |  7      1      9      |  5      4      3      |
 |  457    345    3457   |  56     8      456    |  1      9      2      |
 |  45     9      1      |  3      245    245    |  8      67     67     |
 |-----------------------+-----------------------+-----------------------|
 |  9      28     45678  |  256    24567  2456   |  3      1      4567   |
 |  14567  12     4567   |  8      24567  3      |  9      67     45     |
 |  3      45     4567   |  9      4567   1      |  2      8      4567   |
 +-----------------------------------------------------------------------+
Last edited by daj95376 on Sat May 31, 2008 12:41 pm, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby hobiwan » Sat May 31, 2008 4:36 pm

#47289:

Discontinuous Nice Loop [r6c8]=3=[r6c5]=4=[r6c6]-4-[r2c6]-5-[r8c6]-9-[r8c7]=9=[r4c7]=3=[r6c8] => [r6c8]<>569
Singles
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby hobiwan » Sat May 31, 2008 4:52 pm

#47505:

Forcing Chain Contradiction in c3 => [r1c1]=1
[r1c1]<>1=>[r1c4]=1=>[r7c4]=2=>[r7c2]=8=>[r3c3]=8=>[r3c3]<>5
[r1c1]<>1=>[r1c4]=1=>[r7c4]=2=>[r8c2]=2=>[r8c1]=1=>[r1c1]=6=>[r2c4]=6=>[r5c4]=5=>[r5c3]<>5
[r1c1]<>1=>[r1c4]=1=>[r7c4]=2=>[r8c2]=2=>[r8c1]=1=>[r1c1]=6=>[r2c4]=6=>[r5c4]=5=>[r9c2]=5=>[r789c3]<>5
Singles

There are several other Foring Chains, that all lead to the same contradiction but leave a slightly more complicated solution:
Forcing Chain Contradiction in c3 => [r1c4]=2 or
Forcing Chain Contradiction in c3 => [r2c3]=6 or
Forcing Chain Contradiction in c3 => [r2c4]=4 or
Forcing Chain Contradiction in c3 => [r3c2]=8 or
Forcing Chain Contradiction in c3 => [r3c4]=1 or
Singles plus Remote Pair
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby daj95376 » Sat May 31, 2008 6:33 pm

#47505 ... also ...

Code: Select all
r3c4 =1= r1c4 =2= r7c4 -2- r7c2 =2= r8c2 =1= r8c1  =>  [r3c1]<>1

4- r2c4 -6- r5c4 -5- r5c23 =5= r6c1 =4= r3c1       => [r2c23],[r3c4]<>4

SSTS

[edit: corrected typo.]
Last edited by daj95376 on Sat May 31, 2008 8:44 pm, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby daj95376 » Sun Jun 01, 2008 12:25 am

Final two.

Code: Select all
.2....4.....5.7......3.....5.....713.8..2.............1...6..8.3.7.........4..... #47303

 +--------------------------------------------------------------------------------+
 |  789     2       1359    |  689     189     689     |  4       3579    15789   |
 |  4689    13      13469   |  5       1489    7       |  12689   2369    12689   |
 |  46789   17      14569   |  3       1489    2       |  15689   5679    15689   |
 |--------------------------+--------------------------+--------------------------|
 |  5       49      2       |  689     89      4689    |  7       1       3       |
 |  4679    8       13469   |  179     2       13459   |  569     4569    4569    |
 |  4679    137     13469   |  179     37      13459   |  25689   24569   245689  |
 |--------------------------+--------------------------+--------------------------|
 |  1       459     49      |  279     6       39      |  2359    8       24579   |
 |  3       469     7       |  1289    5       189     |  1269    2469    12469   |
 |  2       569     8       |  4       37      139     |  13569   5679    15679   |
 +--------------------------------------------------------------------------------+

Code: Select all
.7....3.....61.......2.8...2...5....4.....7........18....4...62..1.......3....... #47416

 +-----------------------------------------------------------------------+
 |  8      7      2      |  59     49     459    |  3      1      6      |
 |  59     4      59     |  6      1      3      |  2      7      8      |
 |  1      6      3      |  2      7      8      |  59     459    49     |
 |-----------------------+-----------------------+-----------------------|
 |  2      189    789    |  13     5      479    |  6      49     349    |
 |  4      15     569    |  13     8      69     |  7      2      359    |
 |  3      59     5679   |  79     2469   24679  |  1      8      459    |
 |-----------------------+-----------------------+-----------------------|
 |  7      589    589    |  4      3      1      |  59     6      2      |
 |  569    2      1      |  8      69     569    |  4      3      7      |
 |  569    3      4      |  579    269    25679  |  8      59     1      |
 +-----------------------------------------------------------------------+
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby hobiwan » Sun Jun 01, 2008 1:38 pm

#47303 Without Forcing Chains:

Almost Locked Set XY-Wing: A=[r7c236] - {3459}, B=[r789c7],[r8c89],[r9c89] - {12345679}, C=[r9c5] - {37}, Y,Z=3,7, X=4,5,9 => [r8c2]<>4, [r7c9]<>459
Almost Locked Set XY-Wing: A=[r7c236] - {3459}, B=[r4c456],[r56c4],[r6c5] - {1346789}, C=[r489c2] - {4569}, Y,Z=4,5, X=3 => [r56c6],[r9c5]<>3
Singles
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby hobiwan » Sun Jun 01, 2008 1:53 pm

#47416: Stubborn! I couldn't find a solution in one step.

Forcing Net Contradiction in [r7c7] => [r6c4]=7
[r6c4]<>7=>[r6c4]=9(=>[r5c6]<>9=>[r5c6]=6=>[r5c3]<>6=>[r5c3]=9=>[r4c2]<>9)(=>[r6c9]<>9)=>[r6c2]<>9=>
[r6c2]=5=>[r6c9]<>5=>[r6c9]=4=>[r4c8]<>4=>[r4c8]=9=>[r9c8]<>9=>[r7c7]=9=>[r7c2]<>9=>[r6c2]=9=>[r6c4]<>9=>[r6c4]=7
Singles to:
Code: Select all
.---------------.--------------------.----------------.
| 8    7    2   |  59    49     459  | 3     1    6   |
| 59   4    59  |  6     1      3    | 2     7    8   |
| 1    6    3   |  2     7      8    | 59    459  49  |
:---------------+--------------------+----------------:
| 2    8    7   |  1     5     A49   | 6    C49   3   |
| 4    1    569 |  3     8     A69   | 7     2    59  |
| 3    59   569 |  7     4-69   2    | 1     8    459 |
:---------------+--------------------+----------------:
| 7    59   8   |  4     3      1    | 59    6    2   |
| 59   2    1   |  8    B69     5-6-9| 4     3    7   |
| 6    3    4   | B59    2      7    | 8    C59   1   |
'---------------'--------------------'----------------'

Almost Locked Set XY-Wing: A=[r45c6] - {469}, B=[r8c5],[r9c4] - {569}, C=[r49c8] - {459}, Y,Z=4,5, X=6,9 => [r6c5]<>6, [r8c6]<>69
Singles
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby daj95376 » Sun Jun 01, 2008 5:37 pm

hobiwan wrote:#47416: Stubborn! I couldn't find a solution in one step.

It all depends upon your perspective about where a contradiction can occur and if it's okay for SSTS to complete the puzzle. The following (forcing ?) network leads to a simple SSTS completion of the puzzle.

In shorthand:

Code: Select all
9r3c9 4r3c8 5r9c8 5r8c6 5r2c1 9r2c3 9r5c6 4r1c6 [b5]~7

In more detail:

Code: Select all
9= r3c9 =4= r3c8 =5= r9c8 -5- r9c46 =5= r8c6 -5- r8c1 =5= r2c1 =9= r2c3 -9- ...

                    -9- [r1c6] -4- [r4c6] -7-
                  /                           \
... r5c3 =9= r5c6                               contradiction! => [r3c9]<>9
                  \                           /
                    -9-            [r6c4] -7-
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby Draco » Mon Jun 02, 2008 5:35 pm

daj95376 wrote:It all depends upon your perspective about where a contradiction can occur and if it's okay for SSTS to complete the puzzle. The following (forcing ?) network leads to a simple SSTS completion of the puzzle.
...

In more detail:

Code: Select all
9= r3c9 =4= r3c8 =5= r9c8 -5- r9c46 =5= r8c6 -5- r8c1 =5= r2c1 =9= r2c3 -9- ...

                    -9- [r1c6] -4- [r4c6] -7-
                  /                           \
... r5c3 =9= r5c6                               contradiction! => [r3c9]<>9
                  \                           /
                    -9-            [r6c4] -7-

Danny I can't quite parse your chain/net/loop. From the branch at r5c6, why isn't r6c4=6 a valid move? I am missing whatever prevents that in your PM's and chain.

Cheers...

- drac
Draco
 
Posts: 143
Joined: 14 March 2008

Postby hobiwan » Mon Jun 02, 2008 6:18 pm

daj95376 wrote:It all depends upon your perspective about where a contradiction can occur and if it's okay for SSTS to complete the puzzle. The following (forcing ?) network leads to a simple SSTS completion of the puzzle.

In shorthand:

Code: Select all
9r3c9 4r3c8 5r9c8 5r8c6 5r2c1 9r2c3 9r5c6 4r1c6 [b5]~7


You are right of course. How many nets I find depends on how far my tabling algorithm looks ahead when constructing the initial tables. With my standard setting I don't get your elimination. When I look farther ahead I get (in abbreviated notation):

Forcing Net Contradiction in [c9] => [r3c9]<>9
[r3c9]=9=>[r7c7]=9=>[r6c2]=9=>[r6c4]=7=>[r9c6]=7=>[r6c6]=2=>[r5c6]=6=>[r5c9]=9

[edit: [r9c4]=9 does not belong to the main chain]

or:

Forcing Net Verity => [r3c9]<>9
[r5c3]=9=>[r7c2]=9=>[r3c7]=9=>[r3c9]<>9
[r5c6]=9=>[r6c4]=7=>[r4c6]=4=>[r1c6]=5=>[r9c4]=5=>[r7c7]=5=>[r3c7]=9=>[r3c9]<>9
[r5c9]=9=>[r3c9]<>9

As to SSTS, I am still not really clear on which techniques are covered by it. Singles, Locked Candidates, Hidden and Naked Subsets of course. But what about Two String Kite, Skyscraper, UR, W-Wing, XY-Wing...? Is there a real definition?
Last edited by hobiwan on Tue Jun 03, 2008 3:14 am, edited 1 time in total.
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby daj95376 » Mon Jun 02, 2008 7:48 pm

Draco wrote:From the branch at r5c6, why isn't r6c4=6 a valid move? I am missing whatever prevents that in your PM's and chain.

Draco, I can only presume that you have a typo above. There's no way [r6c4]=6 is possible because [r2c4]=6 is a given.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby daj95376 » Mon Jun 02, 2008 8:14 pm

hobiwan wrote:As to SSTS, I am still not really clear on which techniques are covered by it. Singles, Locked Candidates, Hidden and Naked Subsets of course. But what about Two String Kite, Skyscraper, UR, W-Wing, XY-Wing...? Is there a real definition?

Hobiwan: In diagnostic mode, my old solver lists which candidate eliminations will solve a PM through n-tuples and locked candidates. I refer to this subset of SSTS as simple SSTS.

Code: Select all
===== ===== ===== ===== Simple Sudoku Technique Set (SSTS) by Hierarchy

- Naked  Singles
- Hidden Singles
- Naked  Pairs
- Locked Candidates
- Naked  Triples
- Naked  Quads
- Hidden Pairs
- X-Wing
- Swordfish
- Colors
- Multi-Colors
- Hidden Triples
- XY-Wing
- Hidden Quads

As for your abbreviated nets, a bit too abbreviated for me.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby hobiwan » Mon Jun 02, 2008 8:54 pm

daj95376 wrote:Hobiwan: In diagnostic mode, my old solver lists which candidate eliminations will solve a PM through n-tuples and locked candidates. I refer to this subset of SSTS as simple SSTS...

thanks.

daj95376 wrote:As for your abbreviated nets, a bit too abbreviated for me.


Forcing Net Contradiction in [c9] => [r3c9]<>9
[r3c9]=9(=>[r456c9]<>9=>[r4c8]=9=>[r9c8]<>9=>[r9c8]=5=>[r9c4]<>5)...
...(=>[r456c9]<>9=>[r4c8]=9=>[r4c2]<>9)=>[r3c7]<>9=>[r7c7]=9=>[r7c2]<>9=>[r6c2]=9...
...(=>[r5c3]<>9)=>[r6c4]<>9=>[r6c4]=7=>[r9c4]<>7=>[r9c4]=9(=>[r8c5]<>9=>[r8c5]=6=>[r6c5]<>6)=>...
...[r9c4]<>7=>[r9c6]=7=>[r9c6]<>2=>[r6c6]=2=>[r6c6]<>6=>[r5c6]=6=>[r5c6]<>9=>[r5c9]=9

[edit: first parenthesis was incomplete]

Image

Forcing Net Verity => [r3c9]<>9
[r5c3]=9(=>[r4c2]<>9)=>[r6c2]<>9=>[r7c2]=9=>[r7c7]<>9=>[r3c7]=9=>[r3c9]<>9
[r5c6]=9(=>[r1c6]<>9)(=>[r4c6]<>9)=>[r6c4]<>9=>[r6c4]=7=>[r4c6]<>7=>[r4c6]=4=>...
...[r1c6]<>4=>[r1c6]=5(=>[r8c6]<>5)=>[r9c6]<>5=>[r9c4]=5=>[r9c8]<>5=>[r7c7]=5=>[r3c7]<>5=>[r3c7]=9=>[r3c9]<>9
[r5c9]=9=>[r3c9]<>9
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby hobiwan » Mon Jun 02, 2008 9:09 pm

hobiwan wrote:#47137: This is a tough one!

One possibility:

Forcing Net Verity => [r3c1]=5
[r6c5]=2=>[r4c6]=3=>[r9c5]=3=>[r7c5]=5=>[r3c1]=5
[r6c5]=7=>[r6c2]=5=>[r7c9]=5=>[r3c1]=5
[r6c5]=9(=>[r9c5]<>9)(=>[r7c5]<>9)=>[r8c7]=9=>[r9c6]=9=>[r9c5]=3=>[r7c5]=5=>[r3c1]=5
After that a Remote Pair, Sashimi X-Wing, XY-Wing and Skyscraper

Alternative: Forcing Net (see above) plus Singles, then:
Finned Whale: 7 r235689 c234589 f[r8c6] f[r9c6] => [r7c5]<>7
Finned Whale: 9 r235689 c345789 f[r8c6] f[r9c6] => [r7c5]<>9
After that Singles plus 1 Remote Pair


Obviously I have a problem with my sorting algorithm for fishes. Instead of

Finned Whale: 7 r235689 c234589 f[r8c6] f[r9c6] => [r7c5]<>7
Finned Whale: 9 r235689 c345789 f[r8c6] f[r9c6] => [r7c5]<>9

it should be

Sashimi X-Wing: 7 c16 r17 f[r8c6] f[r9c6] => [r7c5]<>7
Sashimi X-Wing: 9 c16 r17 f[r8c6] f[r9c6] => [r7c5]<>9
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby Draco » Mon Jun 02, 2008 10:32 pm

daj95376 wrote:
Draco wrote:From the branch at r5c6, why isn't r6c4=6 a valid move? I am missing whatever prevents that in your PM's and chain.

Draco, I can only presume that you have a typo above. There's no way [r6c4]=6 is possible because [r2c4]=6 is a given.

Sigh -- more like a "read-o". I was misreading your network.

Cheers...

- drac
Draco
 
Posts: 143
Joined: 14 March 2008

PreviousNext

Return to General